Identification of a tetrameric hedgehog signaling complex.

J Biol Chem

Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.

Published: July 2000

Hedgehog (Hh) signal transduction requires a large cytoplasmic multi-protein complex that binds microtubules in an Hh-dependent manner. Here, we show that three members of this complex, Costal2 (Cos2), Fused (Fu), and Cubitus interruptus (Ci), bind each other directly to form a trimeric complex. We demonstrate that this trimeric signaling complex exists in Drosophila lacking Suppressor of Fused (Su(fu)), an extragenic suppressor of fu, indicating that Su(fu) is not required for the formation, or apparently function, of the Hh signaling complex. However, we subsequently show that Su(fu), although not a requisite component of this complex, does form a tetrameric complex with Fu, Cos2, and Ci. This additional Su(fu)-containing Hh signaling complex does not appear to be enriched on microtubules. Additionally, we demonstrate that in response to Hh Ci accumulates in the nucleus without its various cytoplasmic binding partners, including Su(fu). We discuss a model in which Su(fu) and Cos2 each bind to Fu and Ci to exert some redundant effect on Ci such as cytoplasmic retention. This model is consistent with genetic data demonstrating that Su(fu) is not required for Hh signal transduction proper and with the elaborate genetic interactions observed among Su(fu), fu, cos2, and ci.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C000043200DOI Listing

Publication Analysis

Top Keywords

signaling complex
16
complex
9
signal transduction
8
sufu required
8
sufu cos2
8
sufu
7
identification tetrameric
4
tetrameric hedgehog
4
signaling
4
hedgehog signaling
4

Similar Publications

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Targeting oncogene-induced cellular plasticity for tumor therapy.

Adv Biotechnol (Singap)

July 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.

Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

DSCI: a database of synthetic biology components for innate immunity and cell engineering decision-making processes.

Adv Biotechnol (Singap)

September 2024

MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Although significant progress of clinical strategy has been made in gene editing and cell engineering in immunotherapy, it is now apparent that design and modification in terms of complex signaling pathways and motifs on medical synthetic biology are still full of challenges. Innate immunity, the first line of host defense against pathogens, is critical for anti-pathogens immune response as well as regulating durable and protective T cell-mediated anti-tumor responses. Here, we introduce DSCI (Database of Synthetic Biology Components for Innate Immunity, https://dsci.

View Article and Find Full Text PDF

From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects?

Adv Biotechnol (Singap)

October 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.

The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!