Infectious proteins (prions) can arise de novo as well as by transmission from another individual. De novo prion generation is believed responsible for most cases of Creutzfeldt-Jakob disease and for initiating the mad cow disease epidemic. However, the cellular components needed for prion generation have not been identified in any system. The [URE3] prion of Saccharomyces cerevisiae is an infectious form of Ure2p, apparently a self-propagating amyloid. We now demonstrate a protein required for de novo prion generation. Mks1p negatively regulates Ure2p and is itself negatively regulated by the presence of ammonia and by the Ras-cAMP pathway. We find that in mks1Delta strains, de novo generation of the [URE3] prion is blocked, although [URE3] introduced from another strain is expressed and propagates stably. Ras2(Val19) increases cAMP production and also blocks [URE3] generation. These results emphasize the distinction between prion generation and propagation, and they show that cellular regulatory mechanisms can critically affect prion generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18680 | PMC |
http://dx.doi.org/10.1073/pnas.120168697 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!