The kissing-loop domain (KLD) encompasses a stem-loop, named kissing-loop or dimerization initiation site (DIS) hairpin (nucleotides [nt] 248 to 270 in the human immunodeficiency virus type 1 strains HIV-1(Lai) and HIV-1(Hxb2)), seated on top of a 12-nt stem-internal loop called stem-loop B (nt 243 to 247 and 271 to 277). Destroying stem-loop B reduced genome dimerization by approximately 50% and proviral DNA synthesis by approximately 85% and left unchanged the dissociation temperature of dimeric genomic RNA. The most affected step of reverse transcription was plus-strand DNA transfer, which was reduced by approximately 80%. Deleting nt 241 to 256 or 200 to 256 did not reduce genome dimerization significantly more than the destruction of stem-loop B or the DIS hairpin. We conclude that the KLD is nonmodular: mutations in stem-loop B and in the DIS hairpin have similar effects on genome dimerization, reverse transcription, and encapsidation and are also "nonadditive"; i.e., a larger deletion spanning both of these structures has the same effects on genome dimerization and encapsidation as if stem-loop B strongly impacted DIS hairpin function and vice versa. A C258G transversion in the palindrome of the kissing-loop reduced genome dimerization by approximately 50% and viral infectivity by approximately 1.4 log. Two mutations, CGCG261-->UUAA261 (creating a weaker palindrome) and a Delta241-256 suppressor mutation, were each able to reduce genome dimerization but leave genome packaging unaffected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC112063 | PMC |
http://dx.doi.org/10.1128/jvi.74.12.5729-5735.2000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!