D609-phosphatidylcholine-specific phospholipase C inhibitor attenuates thapsigargin-induced sodium influx in human lymphocytes.

Cell Signal

Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität, A. Schweitzer Str 33, 48-149, Münster, Germany.

Published: May 2000

Previously, we reported that the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor tricyclodecan-9-yl xanthogenate (D609) potentiates thapsigargin-induced Ca(2+) influx in human lymphocytes. In the present study we examined the effect of D609 on the thapsigargin-induced Na(+) entry. We found that the early phase of the thapsigargin-induced increase in the intracellular Na(+) concentration (approx. 1-2 min after stimulation) was attenuated after preincubation of lymphocytes with D609. By contrast, thapsigargin-induced Na(+) influx was not affected in the presence butan-1-ol, which inhibits phosphatidylcholine-specific phospholipase D (PC-PLD). The thapsigargin-induced Na(+) influx could be mimicked by PC-PLC exogenously added to the lymphocyte suspension, whereas addition of PC-PLD had no effect. In addition, thapsigargin stimulated formation of the physiological PC-PLC products, diacylglycerol. Cell-permeable diacylglycerol analogue, dioctanoyl-glycerol (DOG), produced time- and concentration-dependent increase in the intracellular Na(+) concentration. Both thapsigargin- and DOG-induced Na(+) increases were not affected in the presence of Na(+)/H(+) antiport inhibitor, HOE609, or Na(+)/Ca(2+) antiport inhibitor, dimethylthiourea, as well as in the presence of Co(2+) and Ni(2+), which block store-operated Ca(2+) entry. By contrast, markedly reduced thapsigargin- and DOG-induced Na(+) influx were noted in the presence of flufenamic acid, which blocks the non-selective cation current (I(CRANC)). In conclusion, our results suggest that diacylglycerol released due to the PC-PLC activation contributes to the thapsigargin-induced Na(+) entry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0898-6568(00)00068-1DOI Listing

Publication Analysis

Top Keywords

thapsigargin-induced na+
16
na+ influx
12
influx human
8
human lymphocytes
8
phosphatidylcholine-specific phospholipase
8
na+
8
na+ entry
8
increase intracellular
8
intracellular na+
8
na+ concentration
8

Similar Publications

Na/Ca exchanger isoform 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) are recruited by STIM1 to mediate Store-Operated Calcium Entry in primary cortical neurons.

Cell Calcium

January 2022

Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy. Electronic address:

Excessive calcium (Ca) release from the endoplasmic reticulum (ER) represents an important hallmark of several neurodegenerative diseases. ER is recharged from Ca through the so-called Store-Operated Calcium Entry (SOCE) thus providing Ca signals to regulate critical cell functions. Single transmembrane-spanning domain protein stromal interacting molecule 1 (STIM1), mainly residing in the ER, and plasmalemmal channel Orai1 represent the SOCE key components at neuronal level.

View Article and Find Full Text PDF

Recent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels after inhibition of endoplasmic reticulum calcium uptake by thapsigargin.

View Article and Find Full Text PDF

Mechanisms underlying the vasorelaxant effects of the synthetic nitro compound, trans-4-methoxy-β-nitrostyrene (T4MN) were studied in isolated small resistance arteries from spontaneously hypertensive rats (SHRs). T4MN caused vasorelaxation in endothelium-intact third-order branches of the mesenteric artery pre-contracted with noradrenaline (NA). This effect was unchanged by indomethacin and atropine but was significantly reduced by endothelium removal, L-NAME, LY294002, glybenclamide, TEA, apamin, TRAM 34, or by the association of apamin and TRAM 34.

View Article and Find Full Text PDF

Emerging evidence suggests that Ca signals are important for the self-renewal and differentiation of human embryonic stem cells (hESCs). However, little is known about the physiological and pharmacological properties of the Ca-handling machinery in hESCs. In this study we used RT-PCR and Western blotting to analyze the expression profiles of genes encoding Ca-handling proteins; we also used confocal Ca imaging and pharmacological approaches to determine the contribution of the Ca-handling machinery to the regulation of Ca signaling in hESCs.

View Article and Find Full Text PDF

Background/aims: Oscillations of cytosolic Ca2+ activity ([Ca2+]i) participate in the orchestration of tumor cell proliferation. [Ca2+]i could be increased by intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). [Ca2+]i could be decreased by Ca2+ extrusion via Na+/Ca2+ exchange.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!