A common posttranscriptional modification of tRNA is the isopentenylation of adenosine at position 37, creating isopentenyladenosine (i(6)A). The role of this modified nucleoside in protein synthesis of higher eukaryotes is not well understood. Selenocysteyl (Sec) tRNA (tRNA([Ser]Sec)) decodes specific UGA codons and contains i(6)A. To address the role of the modified nucleoside in this tRNA, we constructed a site-specific mutation, which eliminates the site of isopentenylation, in the Xenopus tRNA([Ser]Sec) gene. Transfection of the mutant tRNA([Ser]Sec) gene resulted in 80% and 95% reduction in the expression of co-transfected selenoprotein genes encoding type I and II iodothyronine deiodinases, respectively. A similar decrease in type I deiodinase synthesis was observed when transfected cells were treated with lovastatin, an inhibitor of the biosynthesis of the isopentenyl moiety. Neither co-transfection with the mutant tRNA gene nor lovastatin treatment reduced type I deiodinase mRNA levels. Also, mutant tRNA expression did not alter initiation of translation or degradation of the type I deiodinase protein. Furthermore, isopentenylation of tRNA([Ser]Sec) was not required for synthesis of Sec on the tRNA. We conclude that isopentenylation of tRNA([Ser]Sec) is required for efficient translational decoding of UGA and synthesis of selenoproteins.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M001280200DOI Listing

Publication Analysis

Top Keywords

type deiodinase
12
role modified
8
modified nucleoside
8
trna[ser]sec gene
8
mutant trna
8
isopentenylation trna[ser]sec
8
trna[ser]sec required
8
trna[ser]sec
6
trna
6
synthesis
5

Similar Publications

Purpose: Type 2 deiodinase (D2), encoded by DIO2 gene, catalyzes the activation of the prohormone thyroxine (T4) into the bioactive hormone triiodothyronine (T3) in peripheral tissues, thereby regulating the intracellular Thyroid Hormone (TH) availability. Recently, several studies have demonstrated that a drastic increase in the peripheral activation of TH, via D2, fosters tumor progression, metastasis, and immunity.

Methods: To further prove the clinical relevance of D2 in human cancer, based on public Database of The Cancer Genome Atlas (TCGA), we conducted a pan-cancer analysis of DIO2 expression in various cancer types and investigated the association of DIO2 expression with the tumor microenvironment (TME) components and immune cell infiltration, along with the DIO2 genetic alteration types.

View Article and Find Full Text PDF

Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.

View Article and Find Full Text PDF

Background: This study investigated the relationship between serum thyroid hormones and interleukin-1b (IL-1β) levels and postmortem tissue deiodinase activity in critically ill patients.

Methods: Serum thyroid hormones and IL-1β were measured on the 5th, 15th, and last day of 80 critically ill patients. Forty of these patients were non-survived, and liver and skeletal muscle were harvested to analyze type 1, 2, and 3 iodothyronine deiodinases (D1, D2, and D3) activity.

View Article and Find Full Text PDF

Objective: This study aims to explore the relationship between thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in patients with type 2 diabetes mellitus (T2DM), providing a theoretical basis for MAFLD prevention and treatment.

Methods: From June 2020 to May 2023, 534 T2DM patients were selected from the Endocrinology Department of Xiangyang Hospital affiliated with Wuhan University of Science and Technology. After applying exclusion criteria, 432 subjects were included.

View Article and Find Full Text PDF

Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings.

Gen Comp Endocrinol

January 2025

Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!