High affinity interaction of mibefradil with voltage-gated calcium and sodium channels.

Br J Pharmacol

Institut für Biochemische Pharmakologie, Peter-Mayrstr. 1, A-6020 Innsbruck, Austria.

Published: June 2000

Mibefradil is a novel Ca(2+) antagonist which blocks both high-voltage activated and low voltage-activated Ca(2+) channels. Although L-type Ca(2+) channel block was demonstrated in functional experiments its molecular interaction with the channel has not yet been studied. We therefore investigated the binding of [(3)H]-mibefradil and a series of mibefradil analogues to L-type Ca(2+) channels in different tissues. [(3)H]-Mibefradil labelled a single class of high affinity sites on skeletal muscle L-type Ca(2+) channels (K(D) of 2.5+/-0.4 nM, B(max)=56.4+/-2.3 pmol mg(-1) of protein). Mibefradil (and a series of analogues) partially inhibited (+)-[(3)H]-isradipine binding to skeletal muscle membranes but stimulated binding to brain L-type Ca(2+) channels and alpha1C-subunits expressed in tsA201 cells indicating a tissue-specific, non-competitive interaction between the dihydropyridine and mibefradil binding domain. [(3)H]-Mibefradil also labelled a heterogenous population of high affinity sites in rabbit brain which was inhibited by a series of nonspecific Ca(2+) and Na(+)-channel blockers. Mibefradil and its analogue RO40-6040 had high affinity for neuronal voltage-gated Na(+)-channels as confirmed in binding (apparent K(i) values of 17 and 1.0 nM, respectively) and functional experiments (40% use-dependent inhibition of Na(+)-channel current by 1 microM mibefradil in GH3 cells). Our data demonstrate that mibefradil binds to voltage-gated L-type Ca(2+) channels with very high affinity and is also a potent blocker of voltage-gated neuronal Na(+)-channels. More lipophilic mibefradil analogues may possess neuroprotective properties like other nonselective Ca(2+)-/Na(+)-channel blockers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572110PMC
http://dx.doi.org/10.1038/sj.bjp.0703352DOI Listing

Publication Analysis

Top Keywords

high affinity
20
ca2+ channels
20
l-type ca2+
20
mibefradil
9
ca2+
8
functional experiments
8
mibefradil analogues
8
[3h]-mibefradil labelled
8
affinity sites
8
skeletal muscle
8

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.

View Article and Find Full Text PDF

The production of disulfide-containing recombinant proteins often requires refolding of inclusion bodies before purification. A pre-refolding purification step is crucial for effective refolding because impurities in the inclusion bodies interfere with refolding and subsequent purification. This study presents a new pre-refolding procedure using a reversible S-cationization technique for protein solubilization and purification by reversed-phase high performance liquid chromatography.

View Article and Find Full Text PDF

FDA-approved drugs featuring macrocycles or medium-sized rings.

Arch Pharm (Weinheim)

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.

Macrocycles or medium-sized rings offer diverse functionality and stereochemical complexity in a well-organized ring structure, allowing them to fulfill various biochemical functions, resulting in high affinity and selectivity for protein targets, while preserving sufficient bioavailability to reach intracellular compartments. These features have made macrocycles attractive candidates in organic synthesis and drug discovery. Since the 20th century, more than three-score macrocyclic drugs, including radiopharmaceuticals, have been approved by the US Food and Drug Administration (FDA) for treating bacterial and viral infections, cancer, obesity, immunosuppression, inflammatory, and neurological disorders, managing cardiovascular diseases, diabetes, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!