Nitric oxide (NO) is an important signaling molecule that is generated through the catalytic activity of nitric oxide synthase (NOS). In the brain, NO mediates neuronal survival, synaptic plasticity, vascular smooth muscle relaxation, and endothelial cell permeability. Previous studies demonstrated aberrant expression of the NOS-III gene in neurons and glial cells in brains with Alzheimer's disease (AD). Since NOS-III is also expressed in vascular cells, and cerebrovascular disease (CVD) frequently complicates the pathology of AD, we investigated the role of NOS-III in relation to CVD in AD. Vasculopathy in AD + CVD was characterized by thickening and hyalinization of the media of small and medium-size vessels, variable degrees of beta-amyloid (A beta) deposition, and increased apoptosis of vascular smooth muscle and endothelial cells, particularly involving white matter vessels. These abnormalities were correlated with reduced levels of NOS-III expression in cerebral vessels. Double-labeling studies demonstrated that the low levels of cerebrovascular NOS-III were associated with increased levels of the pro-apoptosis gene product, p53 in smooth muscle and endothelial cells, suggesting a role for altered NOS-III expression in AD-associated vascular degeneration. Constitutively reduced cerebrovascular NOS-III expression and NO production could also lead to cerebral hypoperfusion due to impaired vasodilation responses, and diminished capacity to remove respiratory waste products and toxins from the extracellular space due to reduced capillary permeability. The role for phosphodiesterases as modulators of NOS activity is discussed, as these molecules represent potential therapeutic targets given their cell type and cyclic nucleotide specificities of action.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2000.tb06351.xDOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
smooth muscle
12
nos-iii expression
12
alzheimer's disease
8
vascular smooth
8
studies demonstrated
8
muscle endothelial
8
endothelial cells
8
cerebrovascular nos-iii
8
nos-iii
7

Similar Publications

Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy.

Bioresour Technol

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:

Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).

View Article and Find Full Text PDF

Acute maternal hyperoxygenation to predict hypoxia and need for emergency intervention in fetuses with transposition of the great arteries: a pilot study.

J Am Soc Echocardiogr

January 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Background: Newborns with transposition of the great arteries (TGA) are at risk of severe hypoxia from inadequate atrial mixing, closure of the arterial duct and/or pulmonary hypertension (PPHN). Acute maternal hyperoxygenation (AMH) might assist in identifying at-risk fetuses. We report pulmonary vasoreactivity to AMH in TGA fetuses and its relationship to early postnatal hypoxia and requirement for emergency balloon atrial septostomy (e-BAS).

View Article and Find Full Text PDF

Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory HO may entrain negative feedback regulation of GOX in an age-dependent manner.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!