Surface morphology of the human endometrium. Basic and clinical aspects.

Ann N Y Acad Sci

Division of Obstetrics & Gynaecology, Huddinge Hospital, Karolinska Institute, Stockholm, Sweden.

Published: June 2000

The human endometrium is an extremely sensitive target for steroid hormones. During the menstrual cycle, this tissue undergoes dynamic changes that are reflected on the surface morphology of the epithelium and that can be followed by scanning electron microscopy. The morphologic changes peak at the midsecretory phase, with the formation of the so-called pinopodes. Increasing evidence suggests that these pinopodes are accurate markers for endometrial receptivity, and their detection may be of high clinical utility in the preparation of endometrium before embryo transfer. This article recapitulates published figures of endometrial ultrastructure and presents some unpublished data from ongoing studies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2000.tb06244.xDOI Listing

Publication Analysis

Top Keywords

surface morphology
8
human endometrium
8
morphology human
4
endometrium basic
4
basic clinical
4
clinical aspects
4
aspects human
4
endometrium extremely
4
extremely sensitive
4
sensitive target
4

Similar Publications

A review of electrospun metal oxide semiconductor-based photocatalysts.

iScience

January 2025

Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.

In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.

View Article and Find Full Text PDF

Papillary fibroelastomas (PFEs) are rare, benign, primary cardiac tumors, typically found on the valve surfaces and more commonly on the left side of the heart, with occurrences in the right atrium even rarer. In this case, a highly mobile tumor was incidentally detected in the right atrium of an 83-year-old woman with advanced right lung cancer during preoperative transthoracic echocardiography and magnetic resonance imaging. Although the patient was asymptomatic and of advanced age, the tumor's high mobility warranted resection.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.

View Article and Find Full Text PDF

Aim: To compare three-dimensional (3D) facial morphology of various unilateral cleft subphenotypes at 9-years of age to normative data using a general face template and automatic landmarking. The secondary objective is to compare facial morphology of 9-year-old children with unilateral fusion to differentiation defects.

Methods: 3D facial stereophotogrammetric images of 9-year-old unilateral cleft patients were imported into 3DMedX® for processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!