Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic Abeta peptides. The platelet-derived growth factor beta chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral Abeta(1-42) levels, whereas an experimental mutation of the beta-secretase cleavage site (671(M-->I)) eliminated production of human Abeta. High levels of Abeta(1-42) resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with Abeta levels but not with hAPP levels or plaque load. We conclude that Abeta is synaptotoxic even in the absence of plaques and that high levels of Abeta(1-42) are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent Abeta toxicity plays an important role in the development of synaptic deficits in AD and related conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772621 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.20-11-04050.2000 | DOI Listing |
Anat Rec (Hoboken)
August 2024
Divisions of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Expression of alpha-synuclein (Syn), a presynaptic neuronal protein, was immunohistochemically examined in intact rat submandibular, sublingual, and lingual glands. The submandibular gland contained abundant periductal Syn-immunoreactive (-ir) nerve fibers. Abundant Syn-ir varicosities were present in acini of the sublingual and serous lingual glands.
View Article and Find Full Text PDFJ Comp Neurol
July 2023
Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
α-Synuclein (α-Syn) is enriched in presynaptic terminals of the central nervous system including the retina and plays a role in the synaptic vesicle cycle and synaptic transmission. Abnormal aggregation of α-Syn is considered to be the main component of the Lewy bodies that are the pathological hallmarks of Parkinson's disease. Although expression pattern of α-Syn has been described in the retinas, its precise cellular and subcellular locations are poorly understood.
View Article and Find Full Text PDFCell Transplant
April 2019
1 Neuroscience Training Program, University of Wisconsin-Madison, USA.
α-Synuclein (α-syn) is a small presynaptic protein distributed ubiquitously in the central and peripheral nervous system. In normal conditions, α-syn is found in soluble form, while in Parkinson's disease (PD) it may phosphorylate, aggregate, and combine with other proteins to form Lewy bodies. The purpose of this study was to evaluate, in nonhuman primates, whether α-syn expression is affected by age and neurotoxin challenge.
View Article and Find Full Text PDFJ Neuroendocrinol
June 2002
Division of Endocrinology Diabetes and Bone Diseases (and Arthur Fishberg Center for Neurobiology), Mount Sinai Medical Center, New York, NY 10029, USA.
Galanin synaptic input onto gonadotropin-releasing hormone (GnRH) neuronal cell bodies was analysed in female mice using the presynaptic vesicle-specific protein, synaptophysin (Syn) as a marker. In the first experiment, forebrain sections from normal ovariectomized ovarian steroid-primed mice exhibiting a surge of luteinizing hormone were processed for immunohistochemical labelling for GnRH, synaptophysin, galanin and Fos. Two representative sections from each brain, one passing through the anterior septum (anterior section) and the other through the organum vasculosum lamina terminalis-preoptic area (posterior section), were analysed under the confocal microscope.
View Article and Find Full Text PDFJ Neuroendocrinol
March 2001
Division of Endocrinology and Arthur Fishberg Center for Neurobiology, Box 1055, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
Ultrastructural studies have established that gonadotropin releasing hormone (GnRH) neuronal cell bodies receive sparse synaptic input compared to other neuronal cell types. In the present studies, immunocytochemistry for the presynaptic marker synaptophysin, coupled with confocal microscopy, was employed to evaluate whether there was a difference in synaptic input to GnRH cells within preoptic area grafts (hypogonadal, HPG; preoptic area, POA) in hypogonadal female mice that did or did not show ovarian development. GnRH cells in HPG/POA mice with ovarian development exhibited significantly higher numbers of synaptophysin immunoreactive (syn-IR) appositions as compared with HPG/POA mice without ovarian development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!