Amyloid-beta (Abeta) appears critical to Alzheimer's disease. To clarify possible mechanisms of Abeta action, we have quantified Abeta-induced gene expression in vitro by using Abeta-treated primary cortical neuronal cultures and in vivo by using mice transgenic for the Abeta precursor (AbetaP). Here, we report that aggregated, but not nonaggregated, Abeta increases the level of the mRNAs encoding tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Moreover, tPA and uPA were also upregulated in aged AbetaP overexpressing mice. Because others have reported that Abeta aggregates can substitute for fibrin aggregates in activating tPA post-translationally, the result of tPA induction by Abeta would be cleavage of plasminogen to the active protease plasmin. To gain insights into the possible actions of plasmin, we evaluated the hypotheses that tPA and plasmin may mediate Abeta in vitro toxicity or, alternatively, that plasmin activation may lead to Abeta degradation. In evaluating these conflicting hypotheses, we found that purified plasmin degrades Abeta with physiologically relevant efficiency, i.e., approximately 1/10th the rate of plasmin on fibrin. Mass spectral analyses show that plasmin cleaves Abeta at multiple sites. Electron microscopy confirms indirect assays suggesting that plasmin degrades Abeta fibrils. Moreover, exogenously added plasmin blocks Abeta neurotoxicity. In summation, we interpret these results as consistent with the possibility that the plasmin pathway is induced by aggregated Abeta, which can lead to Abeta degradation and inhibition of Abeta actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772619 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.20-11-03937.2000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!