The formation of the hair follicle and its cyclical growth, quiescence, and regeneration depend on reciprocal signaling between its epidermal and dermal components. The dermal organizing center, the dermal papilla (DP), regulates development of the epidermal follicle and is dependent on signals from the epidermis for its development and maintenance. GFP specifically expressed in DP cells of a transgenic mouse was used to purify this population and study the signals required to maintain it. We demonstrate that specific Wnts, but not Sonic hedgehog (Shh), maintain anagen-phase gene expression in vitro and hair inductive activity in a skin reconstitution assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC316619 | PMC |
Biomater Res
January 2025
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Regen Ther
March 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
Background: Secreted frizzled-related protein 1 (SFRP1) inhibits Wnt signaling and is differentially expressed in human hair dermal papilla cells (DPCs). However, the specific effect of SFRP1 on cell function remains unclear. Telomerase reverse transcriptase (TERT) representing telomerase activity was found highly active around the hair dermal papilla.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China. Electronic address:
Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea.
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!