Inefficient formation of a complex among CXCR4, CD4 and gp120 in U937 clones resistant to X4 gp120-gp41-mediated fusion.

Exp Mol Pathol

Laboratory of Experimental and Computational Biology, NCI-FCRDC, NIH, Frederick, Maryland, 21702-1201, USA.

Published: June 2000

Certain subclones (designated as minus clones) of the promonocytic U937 cell line do not support efficient infection and fusion mediated by T cell line adapted (TCLA) X4 HIV-1 gp120-gp41 (Env) although the CXCR4 and CD4 concentrations at their surfaces are similar to those at the surfaces of clones susceptible to HIV-1 entry (plus clones) (H. Moriuchi et al., J. Virol. 71, 9664-9671, 1997). To test the hypothesis that inefficient formation of gp120-CD4-CXCR4 complexes could contribute to the mechanism of resistance to Env-mediated fusion in the minus clones, we incubated plus and minus cells with HIV-1 LAI gp120 and coimmunoprecipitated CD4 by using anti-CXCR4 antibodies. The gp120 induced inefficient coimmunoprecipitation of CD4 in the minus clones but not in the plus ones. Overexpression of CD4 resulted in significant restoration of the minus clones' susceptibility to fusion in parallel with an increase in the amount of the gp120-CD4-CXCR4 complexes. These results not only suggest that the resistance to TCLA X4 HIV-1 entry in the U937 minus clones is due to the inability of these cells to efficiently form complexes among CD4, gp120, and CXCR4, but also provide a direct evidence for the correlation between fusion and the cell surface concentration of the complexes among CXCR4, CD4, and gp120. These data and similar recent observations in macrophages suggest that inefficient complex formation among CXCR4, CD4, and gp120 could be a general mechanism of cell resistance to gp120-gp41-mediated fusion and a major determinant of HIV-1 evolution in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exmp.1999.2299DOI Listing

Publication Analysis

Top Keywords

cxcr4 cd4
16
cd4 gp120
16
minus clones
16
inefficient formation
8
cd4
8
gp120-gp41-mediated fusion
8
tcla hiv-1
8
hiv-1 entry
8
gp120-cd4-cxcr4 complexes
8
clones
7

Similar Publications

Non-viral, high throughput genetic engineering of primary immune cells using nanostraw-mediated transfection.

Biomaterials

January 2025

Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore. Electronic address:

Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption.

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

Selective PET imaging of CXCR4 using the AlF-labeled antagonist LY2510924.

Eur J Nucl Med Mol Imaging

December 2024

Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.

Background: [Ga]PentixaFor detects C-X-C chemokine receptor type 4 (CXCR4) overexpression in various malignancies, such as multiple myeloma and non-Hodgkin lymphomas, as well as in endocrine and inflammatory disorders. This study aimed to develop an AlF-labeled radiotracer derived from LY2510924 for CXCR4-targeted imaging, leveraging the physical and logistical advantages of fluorine-18.

Methods: We designed a CXCR4-specific radioprobe, [F]AlF-NOTA-SC, based on LY2510924 by incorporating a triglutamate linker and NOTA chelator to enable AlF-labeling.

View Article and Find Full Text PDF
Article Synopsis
  • Lung metastasis is a major cause of cancer death, with few effective treatments; T helper 9 (T9) cells show potential in treating tough cases like lung metastases, but more research on their biology is needed.* ! -
  • The study involved transferring T1, T9, and T17 cells into different cancer models to compare their effectiveness, using techniques like flow cytometry and RNA sequencing to investigate the reasons behind T9 cells' superior ability to reach the lungs.* ! -
  • Results revealed that T9 cells have a stronger ability to target lung metastases due to the CXCR4-CXCL12 pathway, and disabling CXCR4 reduces T9 cells' presence in the lungs, highlighting their
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!