Certain subclones (designated as minus clones) of the promonocytic U937 cell line do not support efficient infection and fusion mediated by T cell line adapted (TCLA) X4 HIV-1 gp120-gp41 (Env) although the CXCR4 and CD4 concentrations at their surfaces are similar to those at the surfaces of clones susceptible to HIV-1 entry (plus clones) (H. Moriuchi et al., J. Virol. 71, 9664-9671, 1997). To test the hypothesis that inefficient formation of gp120-CD4-CXCR4 complexes could contribute to the mechanism of resistance to Env-mediated fusion in the minus clones, we incubated plus and minus cells with HIV-1 LAI gp120 and coimmunoprecipitated CD4 by using anti-CXCR4 antibodies. The gp120 induced inefficient coimmunoprecipitation of CD4 in the minus clones but not in the plus ones. Overexpression of CD4 resulted in significant restoration of the minus clones' susceptibility to fusion in parallel with an increase in the amount of the gp120-CD4-CXCR4 complexes. These results not only suggest that the resistance to TCLA X4 HIV-1 entry in the U937 minus clones is due to the inability of these cells to efficiently form complexes among CD4, gp120, and CXCR4, but also provide a direct evidence for the correlation between fusion and the cell surface concentration of the complexes among CXCR4, CD4, and gp120. These data and similar recent observations in macrophages suggest that inefficient complex formation among CXCR4, CD4, and gp120 could be a general mechanism of cell resistance to gp120-gp41-mediated fusion and a major determinant of HIV-1 evolution in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exmp.1999.2299 | DOI Listing |
Biomaterials
January 2025
Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore. Electronic address:
Transfection of proteins, mRNA, and chimeric antigen receptor (CAR) transgenes into immune cells remains a critical bottleneck in cell manufacturing. Current methods, such as viruses and bulk electroporation, are hampered by low transfection efficiency, unintended transgene integration, and significant cell perturbation. The Nanostraw Electro-actuated Transfection (NExT) technology offers a solution by using high aspect-ratio nanostraws and localized electric fields to precisely deliver biomolecules into cells with minimal disruption.
View Article and Find Full Text PDFSci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
Background: [Ga]PentixaFor detects C-X-C chemokine receptor type 4 (CXCR4) overexpression in various malignancies, such as multiple myeloma and non-Hodgkin lymphomas, as well as in endocrine and inflammatory disorders. This study aimed to develop an AlF-labeled radiotracer derived from LY2510924 for CXCR4-targeted imaging, leveraging the physical and logistical advantages of fluorine-18.
Methods: We designed a CXCR4-specific radioprobe, [F]AlF-NOTA-SC, based on LY2510924 by incorporating a triglutamate linker and NOTA chelator to enable AlF-labeling.
J Immunother Cancer
December 2024
Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!