A series of brassinosteroids with different alkyl or cycloalkyl substituents in place of the isopropyl group at C-24 of brassinolide (1) were prepared by the CuCN-catalyzed addition of Grignard reagents to (threo-2R,3S,5alpha,22R,23R,24S)-23,24-epoxy-6, 6-(ethylenedioxy)-2,3-(isopropylidenedioxy)-26, 27-dinorcholestan-22-ol (9), followed by deketalization and Baeyer-Villiger oxidation. Compound 9 was employed as part of a 70:30 threo/erythro mixture of epoxides 9 and 10, from which the erythro-epoxide 10 was recovered intact after the Grignard additions. Thus, the corresponding n-dodecyl, n-hexyl, n-propyl, tert-butyl, cyclohexyl, cyclopentyl, cyclobutyl, and cyclopropyl analogues of brassinolide were obtained. A rearrangement byproduct was observed during the preparation of the cyclopropyl-substituted brassinosteroid when ether was used as the solvent in the Grignard reaction, but could be avoided by the use of THF. A method for recycling the undesired erythro-epoxide 10 was developed on the basis of deoxygenation with tellurium and lithium triethylborohydride. The rice leaf lamina inclination assay was then used to measure the bioactivity of the products. In general, increasing activity was observed as the length or ring size of the C-24 hydrocarbon substituent decreased. The novel cyclobutyl- and cyclopropyl-substituted analogues of brassinolide (1) were ca. 5-7 times as active as 1 and thus appear to be the most potent brassinosteroids reported to date. Further enhancement of the bioactivity of all of the above brassinosteroids, except that of the inactive n-dodecyl derivative, was observed when the brassinosteroid was applied together with an auxin, indole-3-acetic acid (IAA). The synergy between the brassinosteroids and IAA thus increased the bioactivity of the brassinosteroids, including the cyclopropyl and cyclobutyl derivatives, by ca. 1-2 orders of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo9917947 | DOI Listing |
J Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2025
Graduate School of Science, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
Larvae of the flesh fly, Sarcophaga similis exhibit photoperiodic responses to control pupal diapause. Although the external coincidence model is applicable to S. similis photoperiodism, it remains unknown how the circadian clock system integrates day-length information.
View Article and Find Full Text PDFJ Org Chem
January 2025
Division of Theoretical Chemistry, IFM, Linköping University, 58183 Linköping, Sweden.
The harmonic oscillator model of aromaticity (HOMA) offers a straightforward route to quantifying aromaticity that requires no other information than the bond lengths of the conjugated ring in question. Given that such information is often readily obtainable from quantum-chemical calculations, it is pertinent to improve this parametrized model as much as possible. Here, a new version of HOMA is presented where, atypically, the corresponding parameters are derived from the actual bond lengths of both aromatic and antiaromatic (rather than nonaromatic) reference compounds, as calculated with a high-level method.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Hydrazides are known to catalyze reactions of α,β-unsaturated aldehydes via transient iminium formation. The iminium intermediate displays enhanced electrophilicity, which facilitates conjugate additions and cycloadditions. We observed that a hydrazide embedded in a seven-membered ring catalyzes homoaldol condensation of a simple aldehyde in a process that displays an approximate second-order dependence on the hydrazide.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
The Laboratory for Biomolecular Structures, Brookhaven National Laboratory, Upton, NY 11973, USA.
Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Cytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!