Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies of the reaction of lithium dicyclohexylamide with N,N-dibutylformamide, 1-formylpiperidine, and 4-formylmorpholine indicate that the equilibria resulting from these compounds are shifted toward the formation of an adduct, which quickly collapses to dicyclohexylamine and the lithiated carbamoyl anion derived from the initial disubstituted formamide. Further reactions of the lithium carbamoyl lead to a new adduct where a lithiated carbon is bounded to N, O, and a carbonyl functionality. The (13)C NMR analysis of the reaction mixtures showed the presence of similar intermediates in all cases: adducts of this type have not been reported before. These dilithiated intermediates were trapped with methyl iodide giving the corresponding doubly methylated derivatives. Isolation of substituted glyoxylamides and quantitative determination of the products yields constitute further evidence of the whole reaction scheme proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo9908445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!