Background: A highly tumorigenic cell line designated as UK Pan-1 was established in a surgically removed human pancreatic adenocarcinoma and characterized as having many of the genotypic and phenotypic alterations commonly found in pancreatic tumors.
Methods: The cell line was characterized by its morphology, growth rate in monolayer culture and soft agar, tumorigenicity in nude mice, and chromosomal analysis. Furthermore, the status of p53, Ki-ras mutation and transforming growth factor (TGF)-/receptor expression were determined. The characteristics of UK Pan-1 were compared with those of other commonly used pancreatic carcinoma cell lines.
Results: Quiescent UK Pan-1 cells could be stimulated to proliferate in growth factor free nutrient media, indicating a growth factor independent phenotype. UK Pan- 1 cells grew in soft agar and rapidly formed tumors in nude mice. This cell line possesses a mutation at codon 12 of the c-Ki-ras-2 gene that is commonly found in pancreatic carcinoma. Fluorescence in situ hybridization showed that two alleles of p53 tumor suppressor gene were present in UK Pan-1. However, sequencing analysis revealed a mutation in one allele at exon 8, codon 273 (G to A; Arg to His). Additional growth assays indicated that the cell line was insensitive to negative growth regulation induced by exogenous TGF-beta. Molecular analysis of the TGF-beta signaling pathway showed that UK Pan-1 did not express appreciable levels of the TGF-beta receptor type I, II, or III mRNAs, but did express DPC4 mRNA. Karyotype analysis revealed an 18q21 deletion indicating a possible loss of heterozygosity for DPC4, as well as other chromosomal deletions and rearrangements.
Conclusions: This study indicates that UK Pan-1 is a highly tumorigenic cell line possessing a molecularly complex pattern of mutations that may be used as a model to further the understanding of the mechanisms responsible for the development of pancreatic carcinoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1097-0142(20000501)88:9<2010::aid-cncr5>3.0.co;2-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!