1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro.

Exp Hematol

Department of Internal Medicine I, Division of Hematology and Hemostaseology, University of Vienna, Vienna, Austria.

Published: May 2000

Objective: Because of its potent immunosuppressive properties in vitro as well as in vivo, we studied the effect of 1,25-dihydroxyvitamin D(3) (calcitriol) on differentiation, maturation, and function of dendritic cells (DC).

Materials And Methods: Monocyte-derived DCs were generated with GM-CSF plus IL-4, and maturation was induced by a 2-day exposure to TNFalpha. DCs were derived from CD34(+) progenitors using SCF plus GM-CSF plus TNFalpha. For differentiation studies, cells were exposed to calcitriol at concentrations of 10(-)(9)- 10(-7) M at days 0, 6, and 8, respectively. The obtained cell populations were evaluated by morphology, phenotype, and function.

Results: When added at day 0, calcitriol blocked DC differentiation from monocytes and inhibited the generation of CD1a(+) cells from progenitor cells while increasing CD14(+) cells. Exposure of immature DCs to calcitriol at day 6 resulted in a loss of the DC-characteristic surface molecule CD1a, downregulation of the costimulatory molecules CD40 and CD80, and MHC class II expression, whereas the monocyte/macrophage marker CD14 was clearly reinduced. In addition, calcitriol hindered TNFalpha-induced DC maturation, which is usually accompanied with induction of CD83 expression and upregulation of costimulatory molecules. In contrast, the mature CD83(+) DCs remained CD1a(+)CD14(-) when exposed to calcitriol. The capacity of cytokine-treated cells to stimulate allogeneic and autologous T cells and to take up soluble antigen was inhibited by calcitriol.

Conclusion: The potent suppression of DC differentiation, the reversal of DC phenotype, and function in immature DCs, as well as the inhibition of DC maturation by calcitriol, may explain some of its immunosuppressive properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-472x(00)00143-0DOI Listing

Publication Analysis

Top Keywords

differentiation maturation
8
immunosuppressive properties
8
exposed calcitriol
8
immature dcs
8
costimulatory molecules
8
calcitriol
7
cells
7
differentiation
5
maturation
5
dcs
5

Similar Publications

Deciphering the toxic effects of polystyrene nanoparticles on erythropoiesis at single-cell resolution.

Zool Res

January 2025

Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.

Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.

View Article and Find Full Text PDF

Mature aggressive B-cell lymphomas, such as Burkitt lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL), show variations in microRNA (miRNA) expression. The entity of High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) shares several biological features with both BL and DLBCL but data on its miRNA expression profile are yet scarce. Hence, this study aims to analyze the potential differences in miRNA expression of HGBCL-11q compared to BL and DLBCL.

View Article and Find Full Text PDF

Decentralized testing using multiplex lateral flow assays (mLFAs) to simultaneously detect multiple analytes can significantly enhance detection efficiency, reduce cost and time, and improve analytic accuracy. However, the challenges, including the monochromatic color of probe particles, interference between different test lines, and reduced specificity and sensitivity, severely hinder mLFAs from wide use. In this study, we prepared polydopamine (PDA)-coated dyed cellulose nanoparticles (dCNPs@P) with tunable colors as the probe for mLFAs.

View Article and Find Full Text PDF

A Phosphate-Starvation Enhanced Purple Acid Phosphatase, GmPAP23 Mediates Intracellular Phosphorus Recycling and Yield in Soybean.

Plant Cell Environ

January 2025

Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).

View Article and Find Full Text PDF

The differentiation of mouse neurons is a complex process involving cell maturation and branching, occurring during both, embryonic development and differentiation in vitro. To study mouse neuronal morphology, we used the Thy1 YFP-16 mouse strain. Although this mouse strain was described over twenty years ago, detailed studies on projections outgrowth and morphology of neurons are still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!