In addition to its well-known antioxidant effects, glutathione apparently has an additional double role in the central nervous system as a neurotransmitter and neuromodulator. A number of recent neurochemical, neuropharmacological and electrophysiological studies have yielded evidence on both functions. As an excitatory neurotransmitter, glutathione depolarizes neurons by acting as ionotropic receptors of its own which are different from any other excitatory amino acid receptors. As a neuromodulator, it displaces ionotropic glutamate receptor ligands from their binding sites and regulates calcium influx through N-methyl-D-aspartate receptor-governed ionophores. In brain slices glutathione has been shown to regulate the release of other transmitters, e.g., gamma-aminobutyrate and dopamine, mediated by N-methyl-D-aspartate receptors. In the present article, we review recent findings on the neuromodulatory actions of glutathione and discuss possible physiological and pathophysiological consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0197-0186(00)00031-0DOI Listing

Publication Analysis

Top Keywords

glutamate receptor
8
glutathione
5
modulation glutamate
4
receptor functions
4
functions glutathione
4
glutathione addition
4
addition well-known
4
well-known antioxidant
4
antioxidant effects
4
effects glutathione
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!