Dissection of two hallmarks of the open promoter complex by mutation in an RNA polymerase core subunit.

J Biol Chem

Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08854, USA.

Published: August 2000

AI Article Synopsis

  • Deletion of 10 conserved amino acids from E. coli RNA polymerase beta subunit creates a mutant enzyme that can't hold DNA efficiently.
  • The mutant enzyme rapidly switches between open and closed promoter complexes and is more sensitive to DNA competitors like heparin compared to the wild-type.
  • The study demonstrates that this mutant can form partially open complexes even at low temperatures, suggesting that the stability and temperature sensitivity of these complexes can be separated due to mutation.

Article Abstract

Deletion of 10 evolutionarily conserved amino acids from the beta subunit of Escherichia coli RNA polymerase leads to a mutant enzyme that is unable to efficiently hold onto DNA. Open promoter complexes formed by the mutant enzyme are in rapid equilibrium with closed complexes and, unlike the wild-type complexes, are highly sensitive to the DNA competitor heparin (Martin, E., Sagitov, V., Burova, E., Nikiforov, V., and Goldfarb, A. (1992) J. Biol. Chem. 267, 20175-20180). Here we show that despite this instability, the mutant enzyme forms partially open complexes at temperatures as low as 0 degrees C when the wild-type complex is fully closed. Thus, the two hallmarks of the open promoter complex, the stability toward a challenge with DNA competitors and the sensitivity toward low temperature, can be uncoupled by mutation and may be independent in the wild-type complex. We use the high resolution structure of Thermus aquaticus RNA polymerase core to build a functional model of promoter complex formation that accounts for the observed defects of the E. coli RNA polymerase mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M002511200DOI Listing

Publication Analysis

Top Keywords

rna polymerase
16
open promoter
12
promoter complex
12
mutant enzyme
12
hallmarks open
8
polymerase core
8
coli rna
8
wild-type complex
8
complex
5
dissection hallmarks
4

Similar Publications

Background: RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown.

View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

The roots of Salvia yunnanensis, an herbaceous perennial widely distributed in Southwest China, is often used as a substitute for S. miltiorrhiza, a highly valued plant in traditional Chinese medicine (Wu et al. 2014).

View Article and Find Full Text PDF

sp. nov., a new hyphomycete from desertified rocky soil in southwest China.

Int J Syst Evol Microbiol

January 2025

Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, PR China.

Two strains of , identified based on morphology and phylogenetic analysis, were isolated from rocky desertification soils in Yunnan province. Phylogenetic analyses inferred from three loci (the internal transcribed spacer of the nuclear ribosomal RNA gene, β-tubulin and RNA polymerase II second-largest subunit) showed that the two strains formed a single clade and were introduced as a new species of , is characterized by having ampulliform or broadly fusiform conidiogenous cells and dark olivaceous-green, oblong-ellipsoidal conidia. Phylogenetically, is most closely related to , but it distinguishes the latter by longer and narrower conidia.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!