Effect of distal cavity mutations on the formation of compound I in catalase-peroxidases.

J Biol Chem

Institute of Chemistry and the Institute of Applied Microbiology, University of Agricultural Sciences, Muthgasse 18, A-1190 Vienna, Austria.

Published: July 2000

Catalase-peroxidases have a predominant catalase activity but differ from monofunctional catalases in exhibiting a substantial peroxidase activity and in having different residues in the heme cavity. We present a kinetic study of the formation of the key intermediate compound I by probing the role of the conserved distal amino acid triad Arg-Trp-His of a recombinant catalase-peroxidase in its reaction with hydrogen peroxide, peroxoacetic acid, and m-chloroperbenzoic acid. Both the wild-type enzyme and six mutants (R119A, R119N, W122F, W122A, H123Q, H123E) have been investigated by steady-state and stopped-flow spectroscopy. The turnover number of catalase activity of R119A is 14.6%, R119N 0.5%, H123E 0.03%, and H123Q 0.02% of wild-type activity. Interestingly, W122F and W122A completely lost their catalase activity but retained their peroxidase activity. Bimolecular rate constants of compound I formation of the wild-type enzyme and the mutants have been determined. The Trp-122 mutants for the first time made it possible to follow the transition of the ferric enzyme to compound I by hydrogen peroxide spectroscopically underlining the important role of Trp-122 in catalase activity. The results demonstrate that the role of the distal His-Arg pair in catalase-peroxidases is important in the heterolytic cleavage of hydrogen peroxide (i.e. compound I formation), whereas the distal tryptophan is essential for compound I reduction by hydrogen peroxide.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M002371200DOI Listing

Publication Analysis

Top Keywords

catalase activity
16
hydrogen peroxide
16
peroxidase activity
8
wild-type enzyme
8
enzyme mutants
8
w122f w122a
8
compound formation
8
activity
7
compound
6
distal
4

Similar Publications

The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PD, PD high dose /PD and SR for 28 days respectively. Group V/VI received similar only PD and PD dose respectively whereas Group VIII was exposed to only SR for 28 days.

View Article and Find Full Text PDF

Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.

View Article and Find Full Text PDF

Microplastics in Cuban freshwaters: diversity, temporal changes, and effects on extracellular enzymatic activity.

Environ Pollut

January 2025

Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.

Plastics, as synthetic polymers, are emerging contaminants that can harm organisms and ecosystems. This study investigates the presence of microplastics in sediments of two rivers in western Cuba, assessing their temporal variability, diversity, and characterizing the types of microplastics in these ecosystems. Additionally, the study examines the relationship between microplastic concentrations, the extracellular enzymatic activity of benthic microbial communities, and nutrient levels in sediments.

View Article and Find Full Text PDF

Metabolic profiling of abdominal subcutaneous adipose tissue reveals effects of apple polyphenols for reversing high-fat diet induced obesity in C57BL/6 J mice.

Food Chem

January 2025

College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China. Electronic address:

Apple polyphenols (APP) can reduce obesity. However, the effects of APP on abdominal subcutaneous adipose tissue (aSAT) at metabolic level were unclear. In this study, 5-week APP intervenes were conducted on 10-week high-fat diet (HFD) feeding mice with doses of 200 and 500 mg/kg b.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!