Results are reported, based on 5 healthy subjects, concerning patterns in the dynamics of the sequential arrangement of spindles in human stage 2 sleep. Specifically, the conditional probability of incidence of successive spindle lengths and successive inter-spindle intervals is investigated. The results show that successive spindle lengths may be statistically independent. However, their distribution (histogram) may be similar for two different stage 2 periods, one in the first third and another in the second third of the night sleep record. In contrast to the finding about spindle lengths, results show that successive inter-spindle intervals may not be statistically independent. Furthermore, the overall dynamics of the sequential arrangement of inter-spindle intervals may be similar for the two sleep periods. These findings are discussed in the context of the "sleep maintenance" role of spindles.
Download full-text PDF |
Source |
---|
Langmuir
January 2025
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Controllable preparation of inorganic nanomaterials with specific morphology and structure is very important for their applications in various fields. Herein, a general strategy was proposed to controllably synthesize nano-CaCO via a water-in-oil microemulsion method in the rotating packed bed reactor. By tuning key parameters, nano-CaCO with four primarily analyzed morphologies, including spherical, spindle-like, clustered, or linear formations, can be selectively obtained.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030.
Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of .
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC 27710, USA. Electronic address:
Anaphase is tightly controlled spatiotemporally to ensure proper separation of chromosomes. The mitotic spindle, the self-organized microtubule structure driving chromosome segregation, scales in size with the available cytoplasm. Yet, the relationship between spindle size and chromosome movement remains poorly understood.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry, University of Oxford, Oxford, UK.
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.
Structural variations in the duck genome significantly impact the environmental adaptability and phenotypic diversity of duck populations. Characterizing these SVs in local domestic duck breeds from Shandong province offers valuable insights for breed selection and the development of new breeds. This study aimed to profile the genomic SVs in three local duck breeds (Matahu duck, Weishan partridge duck, and Wendeng black duck) and explore their differential distributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!