CD44 on lymphocytes binding to its carbohydrate ligand hyaluronan can mediate primary adhesion (rolling interactions) of lymphocytes on vascular endothelial cells. This adhesion pathway is utilized in the extravasation of activated T cells from the blood into sites of inflammation and therefore influences patterns of lymphocyte homing and inflammation. Hyaluronan is a glycosaminoglycan found in the extracellular matrix and is involved in a number of biological processes. We have shown that the expression of hyaluronan on the surface of endothelial cells is inducible by proinflammatory cytokines. However, the manner through which hyaluronan is anchored to the endothelial cell surface so that it can resist shear forces and the mechanism of the regulation of the level of hyaluronan on the cell surface has not been investigated. In order to characterize potential hyaluronan receptors on endothelial cells, we performed analyses of cell surface staining by flow cytometry on intact endothelial cells and ligand blotting assays using membrane fractions. Hyaluronan binding activity was detected as a major species corresponding to the size of CD44, and this was confirmed to be the same by Western blotting and immunoprecipitation. Moreover, alterations in the surface level of hyaluronan after tumor necrosis factor-alpha stimulation is regulated primarily by changes in the cell surface levels of the hyaluronan-binding form of CD44. In laminar flow assays, lymphoid cells specifically roll on hyaluronan anchored by purified CD44 coated on glass tubes, indicating that the avidity of the endothelial CD44/hyaluronan interaction is sufficient to support rolling adhesions under conditions mimicking physiologic shear forces. Together these studies show that CD44 serves to anchor hyaluronan on endothelial cell surfaces, that activation of CD44 is a major regulator of endothelial surface hyaluronan expression, and that the non-covalent interaction between CD44 and hyaluronan is sufficient to provide resistance to shear under physiologic conditions and thereby support the initial steps of lymphocyte extravasation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.20.14939DOI Listing

Publication Analysis

Top Keywords

endothelial cells
20
cell surface
16
hyaluronan
13
endothelial
9
surface
8
vascular endothelial
8
cd44
8
form cd44
8
hyaluronan anchored
8
endothelial cell
8

Similar Publications

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

Int J Nanomedicine

January 2025

Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!