One of the major problems after allogeneic bone marrow transplantation (BMT) is a high frequency of leukemia relapse. We have prospectively studied the presence of donor- and recipient-derived chimeric cells in bone marrow recipients with pre-B cell acute lymphoblastic leukemia (pre-B-ALL). The chimeric status of BMT recipients was compared to minimal residual disease (MRD) detection by analysis of immunoglobulin heavy chain (IgH) and T cell receptor (TcR) genes. Post-transplant blood and bone marrow samples from 12 patients with pre-B-ALL were studied. Five patients showed mixed chimerism (MC) in the CD19-positive cell fraction. Four of them have relapsed to date. The remaining patient with MC in the B cell lineage was also MRD positive in the same samples. All seven patients with donor chimerism in the B cell fraction remain in clinical remission (P = 0.01). In samples from all five patients having MC in the B cell lineage, the patient-specific IgH or TcR rearrangement was also detected. In three of four patients who relapsed, MC in the B cell lineage was seen more than 2.5 months prior to morphologically verified relapse. The results of this comparison suggest that routinely performed MC analysis of the affected cell lineage may facilitate post-BMT monitoring and rapid therapeutic decisions in transplanted patients with pre-B-ALL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.bmt.1702337 | DOI Listing |
Stem Cell Res Ther
January 2025
Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.
View Article and Find Full Text PDFNat Immunol
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Mucosal antigen-specific T cells are pivotal for pathogen clearance and immune modulation in respiratory infections. Dysregulated T cell responses exacerbate coronavirus disease 2019 severity, marked by cytokine storms and respiratory failure. Despite extensive description in peripheral blood, the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in the lungs remain elusive.
View Article and Find Full Text PDFTrends Cancer
January 2025
Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland. Electronic address:
Cancer development is driven by mutations, yet tumor-causing mutations only lead to tumor formation within specific cellular contexts. The reasons why certain mutations trigger malignant transformation in some contexts but not others remain often unclear. Both intrinsic and extrinsic factors play a key role in driving carcinogenesis by leading the cells toward a state of 'oncogenic competence'.
View Article and Find Full Text PDFPLoS Biol
January 2025
Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.
Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!