A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing ligand-induced conformational changes of human CD38. | LitMetric

Probing ligand-induced conformational changes of human CD38.

Eur J Biochem

Laboratoire d'Immunologie Cellulaire, UMR 7627 CNRS, Hôpital Pitié-Salpétrière, Paris, France.

Published: May 2000

The lymphoid surface antigen CD38 is basically a NAD+glycohydrolase, which is also involved in the metabolism of cyclic ADP-ribose. Besides, this ecto-enzyme has potential signalling roles in T- and B-cells. Such multiple functions prompted us to study the molecular dynamics of the CD38 protein and especially the relationship between its ecto-enzymatic active site and its epitope, i.e. the binding site of most known anti-CD38 monoclonal antibodies. Both epitopic and enzymatic sites were shown to be degraded by proteases, such as trypsin or chymotrypsin. This sensitivity was almost entirely suppressed in the presence of substrates or inhibitors. Both sites were also degraded in the presence of reducing agents, as dithiothreitol. Inhibitory ligands induced the same resistance of both sites against reducing attack. The binding of CD38 ligands to the active site triggers therefore conformational changes that shield some backbone bonds and disulfide bridges against, respectively, proteolytic cleavage or reduction. This transconformation was found moreover to irreversibly take place after incubation with substrates such as NAD+ in the presence of dithiothreitol. The epitope remained preserved, while the enzymatic activity was lost. This inactivation probably resulted from the covalent trapping of the catalytically reactive intermediate in the active site (i.e. paracatalytic inactivation). These data have major implications in the knowledge of the CD38 structure, especially with regard to the location of disulfide bridges and their accessibility. Potential consequences of the conformational plasticity of CD38 should also be considered in its physiological functions such as signalling.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2000.01329.xDOI Listing

Publication Analysis

Top Keywords

active site
12
conformational changes
8
sites degraded
8
disulfide bridges
8
cd38
6
probing ligand-induced
4
ligand-induced conformational
4
changes human
4
human cd38
4
cd38 lymphoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!