We have searched for a minimal interaction motif in tau protein that supports the aggregation into Alzheimer-like paired helical filaments. Digestion of the repeat domain with different proteases yields a GluC-induced fragment comprising 43 residues (termed PHF43), which represents the third repeat of tau plus some flanking residues. This fragment self assembles readily into thin filaments without a paired helical appearance, but these filaments are highly competent to nucleate bona fide PHFs from full-length tau. Probing the interactions of PHF43 with overlapping peptides derived from the full tau sequence yields a minimal hexapeptide interaction motif of (306)VQIVYK(311) at the beginning of the third internal repeat. This motif coincides with the highest predicted beta-structure potential in tau. CD and Fourier transform infrared spectroscopy shows that PHF43 acquires pronounced beta structure in conditions of self assembly. Point mutations in the hexapeptide region by proline-scanning mutagenesis prevent the aggregation. The data indicate that PHF assembly is initiated by a short fragment containing the minimal interaction motif forming a local beta structure embedded in a largely random-coil protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC25793 | PMC |
http://dx.doi.org/10.1073/pnas.97.10.5129 | DOI Listing |
CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.
View Article and Find Full Text PDFActa Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!