Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract.

J Neurophysiol

Department of Molecular and Integrative Physiology and the Mental Retardation and Human Development Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160-7336, USA.

Published: May 2000

It has been hypothesized that the magnocellular red nucleus (RNm) contributes to compensation for motor impairments associated with lesions of the pyramidal tract. To test this hypothesis, we used stimulus triggered averaging (StTA) of electromyographic (EMG) activity to characterize changes in motor output from the red nucleus after lesions of the pyramidal tract. Three monkeys were trained to perform a reach and prehension task. EMG activity was recorded from 11 forearm muscles including one elbow, five wrist, and five digit muscles. Microstimulation (20 microA at 20 Hz) was delivered throughout the movement task to compute StTAs. Two monkeys served as controls. In a third monkey, 65% of the left pyramidal tract had been destroyed by an electrolytic lesion method five years before recording. The results demonstrate a clear pattern of postlesion reorganization in red nucleus-mediated output effects on forearm muscles. The normally prominent extensor preference in excitatory output from the RNm (92% in extensors) was greatly diminished in the lesioned monkey (59%). Similarly, suppression effects, which are normally much more prominent in flexor than in extensor muscles (90% in flexors), were also more evenly distributed after recovery from pyramidal tract lesions. Because of the limited excitatory output from the RNm to flexor muscles that normally exists, loss of corticospinal output would leave control of flexors particularly weak. The changes in RNm organization reported in this study would help restore function to flexor muscles. These results support the hypothesis that the RNm is capable of reorganization that contributes to the recovery of forelimb motor function after pyramidal tract lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.2000.83.5.3147DOI Listing

Publication Analysis

Top Keywords

pyramidal tract
24
red nucleus
12
forearm muscles
12
lesions pyramidal
12
emg activity
8
excitatory output
8
output rnm
8
tract lesions
8
flexor muscles
8
muscles
7

Similar Publications

A 49-year-old female presented with the primary complaint of hand tremors. Neurological examination on admission revealed signs of cognitive impairment, bulbar palsy, dystonia, cerebellar ataxia, and pyramidal tract disease. T-weighted brain MRI revealed hyperintense signals in the subcortical white matter, basal ganglia, and cerebellar dentate nucleus, with no atrophy of the brainstem or corpus callosum.

View Article and Find Full Text PDF

Cerebrotendinous Xanthomatosis occurs at high frequency in Ashkenazi Jews.

Mol Genet Metab

January 2025

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. Electronic address:

Cerebrotendinous Xanthomatosis (CTX) is a treatable, inborn error of bile acids metabolism caused by pathogenic variants in CYP27A1. CTX is a multi-organ system disorder that progresses over decades. Clinical features include cerebellar dysfunction, pyramidal tract dysfunction, cognitive deficits and decline, peripheral neuropathy, chronic diarrhea, bilateral cataracts, and tendon xanthomas.

View Article and Find Full Text PDF

There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.

View Article and Find Full Text PDF

Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment.

Tissue Cell

January 2025

Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain. Electronic address:

The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years).

View Article and Find Full Text PDF

Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!