Elimination of cerebellar granule cells early during postnatal development produces abnormal neural organization that retains immature characteristics in the adult, including innervation of each Purkinje cell by multiple climbing fibers from the inferior olive. To elucidate mechanisms underlying development of the olivocerebellar projection, we studied light-microscopic morphology of single olivocerebellar axons labeled with biotinylated dextran amine in adult rats rendered agranular by a single postnatal X-irradiation. Each reconstructed olivocerebellar axon gave off approximately 12 climbing fibers, approximately twice as many as in normal rats. Terminal arborizations of climbing fibers made irregular tufts in most areas, whereas they were arranged vertically in a few mildly affected areas. Each climbing fiber terminal arborization innervated only part of the dendritic arbor of a Purkinje cell, and multiple climbing fibers innervated a single Purkinje cell. These climbing fibers originated either from the same olivocerebellar axon (pseudomultiple innervation) or from distinct axons (true multiple innervation). Abundant non-climbing fiber thin collaterals projected to all cortical layers. Although the longitudinal pattern of the zonal olivocerebellar projection was generally observed, lateral branching, including bilateral projections, was relatively frequent. These results suggest that the granule cell-parallel fiber system induces several important features of olivocerebellar projection: (1) organization of the climbing fiber terminal arborization tightly surrounding Purkinje cell dendrites, (2) elimination of pseudo- and true multiple innervations establishing one-to-one innervation, (3) retraction of non-climbing fiber thin collaterals from the molecular layer, and (4) probable refinement of the longitudinal projection domains by removing aberrant transverse branches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772707PMC
http://dx.doi.org/10.1523/JNEUROSCI.20-10-03745.2000DOI Listing

Publication Analysis

Top Keywords

climbing fibers
24
purkinje cell
16
olivocerebellar projection
12
cell multiple
8
multiple climbing
8
olivocerebellar axon
8
climbing fiber
8
fiber terminal
8
terminal arborization
8
true multiple
8

Similar Publications

The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.

View Article and Find Full Text PDF

C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.

View Article and Find Full Text PDF

Background: Menisci, one of the most important anatomical structures of the knee joint, plays a role in load transfer, stability, shock absorption, prevention of articular cartilage degeneration, and proprioception. Type I collagen, the main component of the meniscus, and type II collagen fibers play an important role in the stability of the knee joint. This study aimed to evaluate the effects of Naturagen® 4 Joint product containing type I, II, and III collagen on pain, quality of life, and physical functions in patients with meniscopathy.

View Article and Find Full Text PDF

Introduction: Women have generally lower body size and lean- to fat-mass ratio, lower maximal anaerobic power due to a lower muscle mass, and fewer fast-twitch fibers, although they can show higher resistance to fatigue or greater metabolic flexibility than men. These factors are well known and explain the sex differences in endurance sports such as distance running (10%-12%). Several of these factors-particularly the differences in body composition and skeletal-muscle characteristics-may directly impact vertical displacement and uphill performance.

View Article and Find Full Text PDF

Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!