Osmomechanical regulation of membrane trafficking in polarized cells.

Biochem Biophys Res Commun

Department of Integrative Biology and Pharmacology, The University of Texas-Houston Health Science Center, Houston, Texas, 77030, USA.

Published: May 2000

AI Article Synopsis

Article Abstract

The regulation of membrane trafficking is thought to be predominantly under the control of agonist-receptor transduction pathways. In the present study, osmomechanical stress due to swelling, a condition often accompanying cell activation, was shown to induce multiple membrane trafficking pathways in polarized absorptive epithelial cells in the absence of agonists. Osmomechanical stress activated rapidly (seconds) pathways of calcium-dependent membrane insertion into the basolateral domain, pathways of calcium-independent membrane retrieval from the basolateral domain, and a novel pathway of transcytosis (transcellular) between basolateral and apical cell domains. These pathways appear to underlie the transfer and regulation of transport proteins amongst cell compartments. This broad affect of osmomechanical stress on trafficking pathways may reflect a global mechanism for redistribution of transport proteins and other membrane components amongst cell compartments during states of mechanical stress.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2000.2638DOI Listing

Publication Analysis

Top Keywords

membrane trafficking
12
osmomechanical stress
12
regulation membrane
8
trafficking pathways
8
basolateral domain
8
transport proteins
8
cell compartments
8
membrane
6
pathways
6
osmomechanical
4

Similar Publications

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Vasopressin (VP) activates protein kinase A (PKA), resulting in phosphorylation events and membrane accumulation of aquaporin-2 (AQP2). Epidermal growth factor receptor (EGFR) inhibition with erlotinib also induces AQP2 membrane trafficking with a phosphorylation pattern similar to VP, but without increasing PKA activity. Here, we identify the ribosomal s6 kinase (RSK) as a major mediator phosphorylating AQP2 in this novel, erlotinib-induced pathway.

View Article and Find Full Text PDF

T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction.

View Article and Find Full Text PDF

MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!