As part of an on-going study on the suitability of a formal therapeutic drug monitoring (TDM) of antiviral drugs for improving the management of HIV infection, a high-performance liquid chromatography method has been developed to quantify simultaneously in plasma five HIV protease inhibitors (PIs) (i.e., indinavir, amprenavir, saquinavir, ritonavir, nelfinavir) and the novel non-nucleoside reverse transcriptase inhibitor efavirenz. After viral inactivation by heat (60 degrees C for 60 min), plasma (600 microl), with clozapine added as internal standard, is diluted 1:1 with phosphate buffer, pH 7 and subjected to a solid-phase extraction on a C18 cartridge. Matrix components are eliminated with 2 x 500 microl of a solution of 0.1% H3PO4 neutralised with NaOH to pH 7. PIs and efavirenz are eluted with 3 x 500 microl MeOH. The resulting eluate is evaporated under nitrogen at room temperature and is reconstituted in 100 microl 50% MeOH. A 40-microl volume is subjected to HPLC analysis onto a Nucleosil 100, 5 microm C18 AB column, using a gradient elution of MeCN and phosphate buffer adjusted to pH 5.15 and containing 0.02% sodium heptanesulfonate: 15:85 at 0 min-->30:70 at 2 min-->32:68 at 8 min-->42:58 at 18 min-->46:54 at 34 min, followed by column cleaning with MeCN-buffer, pH 5.15 (90:10), onto which 0.3% AcOH is added. Clozapine, indinavir, amprenavir, saquinavir, ritonavir, efavirenz and nelfinavir are detected by UV at 201 nm at a retention time of 8.2, 13.0, 16.3, 21.5, 26.5, 28.7 and 31.9 min, respectively. The total run time for a single analysis is 47 min, including the washing-out and reequilibration steps. The calibration curves are linear over the range 100-10,000 ng/ml. The absolute recovery of PIs/efavirenz is always higher than 88%. The method is precise with mean inter-day relative standard deviations within 2.5-9.8% and accurate (range of inter-day deviations -4.6 to +4.3%). The in vitro stability of plasma spiked with PIs/efavirenz at 750, 3000 and 9000 ng/ml has been studied at room temperature, -20 degrees C and +60 degrees C. The method has been validated and is currently applied to the monitoring of PIs and efavirenz in HIV patients. This HPLC assay may help clinicians confronted to questionable compliance, side effects or treatment failure in elucidating whether patients are exposed to adequate circulating drug levels. The availability of such an assay represents an essential step in elucidating the utility of a formal TDM for the optimal follow-up of HIV patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4347(99)00573-3 | DOI Listing |
AIDS Behav
May 2023
Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688, Kraków, Poland.
Multiple factors may affect combined antiretroviral therapy (cART). We investigated the impact of food, beverages, dietary supplements, and alcohol on the pharmacokinetic and pharmacodynamic parameters of 33 antiretroviral drugs. Systematic review in adherence to PRISMA guidelines was performed, with 109 reports of 120 studies included.
View Article and Find Full Text PDFInt J Mol Sci
October 2022
Center for Biomedical Research, Population Council, New York, NY 10065, USA.
The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process.
View Article and Find Full Text PDFInform Med Unlocked
February 2021
Faculty of Biotechnology & Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.
SARS-CoV-2 has triggered a major epidemic among people around the world, and it is the newest in the sequence to become prevalent among other infectious diseases. The drug repurposing concept has been utilized effectively for numerous viral infections. Considering the situation and the urgency, the idea of drug repurposing for coronavirus infection (COVID-19) is also being studied.
View Article and Find Full Text PDFInfect Disord Drug Targets
January 2022
Department of Chemistry, The University of Jordan, Amman 11942,Jordan.
Background: Coronavirus disease 2019 (COVID-19) is a life intimidating viral infection caused by a positive sense RNA virus belonging to the Coronaviridae family, named severe acute respiratory distress syndrome coronavirus 2 (SARA-CoV-2). Since its outbreak in December 2019, the pandemic has spread to more than 200 countries, infected more than 26 million, and claimed the lives of more than 800,000 people. As a disease, COVID-19 can lead to severe and occasionally fatal respiratory problems in humans.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
September 2020
Department of Chemistry, Government Engineering College, Thrissur, Kerala, 680009, India.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus behind the fast-spreading coronavirus disease 2019 (COVID-19). Pharmaceutical researchers are currently researching medications or preventive vaccines that may be used to treat and combat the spread of COVID-19. Health practitioners all over the world are treating patients with currently available antiviral drugs, primarily the protease inhibitors used for HIV treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!