Background: Donor splice-site de novo heterozygous mutations in intron 9 of the Wilms' tumor gene (WT1) have been reported in Frasier syndrome, which is defined by the association of focal and segmental glomerulosclerosis (FSGS), male pseudohermaphroditism, and gonadoblastoma. These splice-site mutations alter the WT1 alternative splicing leading to two WT1 isoforms, with (+) or without (-) three amino acids, lysine-threonine-serine (KTS), between zinc fingers 3 and 4. The aim of this work was to investigate the possibility that some cases of primary steroid-resistant nephrotic syndrome associated with FSGS may be caused by WT1 splice-site mutations.

Methods: We analyzed WT1 exons 8 and 9 and the surrounding exon/intron boundary DNA sequences in 37 children with nonfamilial primary steroid-resistant nephrotic syndrome. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the relative ratio of +KTS/-KTS transcripts from immortalized lymphocyte RNA.

Results: One boy with FSGS and associated pathologies (diaphragmatic hernia, proximal hypospadias, and unilateral testicular ectopia) was found to carry the heterozygous 1228 +4 C-->T splice-site mutation. RT-PCR quantitation of the +KTS/-KTS transcripts from immortalized lymphocyte RNA of this patient showed a diminution of the +KTS/-KTS isoform ratio (0.43), which is identical to that reported in patients with Frasier syndrome. Using the same approach, healthy control subjects have +KTS/-KTS ratios ranging from 1.50 to 2.00.

Conclusions: This study expands the range of the phenotypic presentation of the intron 9 splice-site WT1 mutations and adds to the already reported heterogeneity of primary steroid-resistant nephrotic syndromes. We suggest that these mutations are not likely to be a common cause of isolated steroid-resistant nephrotic syndrome, and recommend a WT1 exon 9/intron 9 splice-site study in children with primary steroid-resistant nephrotic syndrome if genital or diaphragmatic anomalies are associated. The identification of such WT1 mutations has practical implications for the management of these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.2000.00036.xDOI Listing

Publication Analysis

Top Keywords

primary steroid-resistant
20
steroid-resistant nephrotic
20
nephrotic syndrome
16
wt1
9
wt1 splice-site
8
splice-site mutations
8
focal segmental
8
segmental glomerulosclerosis
8
frasier syndrome
8
+kts/-kts transcripts
8

Similar Publications

Background: Primary coenzyme Q10 (CoQ10) deficiency is an autosomal recessive genetic disease caused by mitochondrial dysfunction. Variants in Coenzyme Q8B () can cause primary CoQ10 deficiency. -related glomerulopathy is a recently recognized glomerular disease that most often presents as steroid-resistant nephrotic syndrome (SRNS) in childhood.

View Article and Find Full Text PDF

Background: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by presenting primarily with nephrotic syndrome (NS) are rarely reported.

View Article and Find Full Text PDF

Steroid-resistant nephrotic syndrome as paraneoplastic syndrome of Waldenström macroglobulinemia: a case report.

CEN Case Rep

January 2025

Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan.

Reports of glomerulonephritis associated with lymphoproliferative disorders are common, but reports of minimal change disease (MCD) accompanying non-Hodgkin's lymphoma are rare. Here, we present a case of a 45-year-old woman diagnosed with primary Waldenström's macroglobulinemia (WM) during MCD treatment. Her kidney biopsy revealed endothelial cell injury in parts of the MCD.

View Article and Find Full Text PDF

Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.

View Article and Find Full Text PDF

Background: This case report describes a unique presentation of sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) caused by a rare SGPL1 variant, highlighting the diagnostic and management challenges associated with this condition.

Case Presentation: A 2-year-old Iranian female presented with steroid-resistant nephrotic syndrome (NS), primary adrenal insufficiency (AI), growth delay, seizures, and hyperpigmentation. Laboratory evaluation revealed hypoalbuminemia, significant proteinuria, hyperkalemia, and elevated adrenocorticotropic hormone (ACTH) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!