The cleavage mechanism has been studied for nuclear RNase P from Saccharomyces cerevisiae, Homo sapiens sapiens and Dictyostelium discoideum, representing distantly related branches of the Eukarya. This was accomplished by using precursor tRNAs (ptRNAs) carrying a single Rp or Sp-phosphorothioate modification at the normal RNase P cleavage site (position -1/+1). All three eukaryotic RNase P enzymes cleaved the Sp-diastereomeric ptRNA exclusively one nucleotide upstream (position -2/-1) of the modified canonical cleavage site. Rp-diastereomeric ptRNA was cleaved with low efficiency at the modified -1/+1 site by human RNase P, at both the -2/-1 and -1/+1 site by yeast RNase P, and exclusively at the -2/-1 site by D. discoideum RNase P. The presence of Mn(2+ )and particularly Cd(2+) inhibited the activity of all three enzymes. Nevertheless, a Mn(2+ )rescue of cleavage at the modified -1/+1 site was observed with yeast RNase P and the Rp-diastereomeric ptRNA, consistent with direct metal ion coordination to the (pro)-Rp substituent during catalysis as observed for bacterial RNase P enzymes. In summary, our results have revealed common active-site constraints for eukaryotic and bacterial RNase P enzymes. In all cases, an Rp as well as an Sp-phosphorothioate modification at the RNase P cleavage site strongly interfered with the catalytic process, whereas substantial functional interference is essentially restricted to one of the two diastereomers in other RNA and protein-catalyzed hydrolysis reactions, such as those catalyzed by the Tetrahymena ribozyme and nuclease P1.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.3655DOI Listing

Publication Analysis

Top Keywords

rnase enzymes
16
cleavage site
12
-1/+1 site
12
rnase
11
eukaryotic rnase
8
sp-phosphorothioate modification
8
rnase cleavage
8
rp-diastereomeric ptrna
8
modified -1/+1
8
yeast rnase
8

Similar Publications

The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response.

View Article and Find Full Text PDF

In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .

View Article and Find Full Text PDF

RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation.

View Article and Find Full Text PDF

Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices.

View Article and Find Full Text PDF

ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III.

Int J Biol Macromol

January 2025

Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!