Postischemic hypothermia provides long-lasting neuroprotection against global cerebral ischemia in adult rats and gerbils. Studies indicate that hypothermia must be prolonged (e.g., 24 h) to indefatigably salvage hippocampal CA1 neurons. Delayed hypothermia also reduces focal ischemic injury. However, no study has examined long-term outcome following postischemic hypothermia in adult animals. Furthermore, most studies examined only brief hypothermia (e.g., 3 h). Since previous studies may have overestimated long-term benefit and have likely used suboptimal durations of hypothermia, we examined whether prolonged cooling would attenuate infarction at a 2-month survival time following middle cerebral artery occlusion (MCAo) in rats. Adult male Wistar rats were implanted with telemetry brain temperature probes and later subjected to 30 min of normothermic MCAo (contralateral to side of probe placement) or sham operation. Ischemia was produced by the insertion of an intraluminal suture combined with systemic hypotension (60 mm Hg). Sham rats and one ischemic group controlled their own postischemic temperature while another ischemic group was cooled to 34 degrees C for 48 h starting at 30 min following the onset of reperfusion. The infarct area was quantified after a 2-month survival time. Normothermic MCAo resulted in almost complete striatal destruction (91% loss +/- 12 SD) with extensive cortical damage (36% +/- 16 SD). Delayed hypothermia treatment significantly reduced cortical injury to 10% +/- 10 SD (P < 0.001) while striatal injury was marginally reduced to 79% loss +/- 17 SD (P < 0.05). Delayed hypothermia of only 34 degrees C provided long-lasting cortical and striatal protection in adult rats subjected to a severe MCAo insult. These results strongly support the clinical assessment of hypothermia in acute stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exnr.2000.7369DOI Listing

Publication Analysis

Top Keywords

postischemic hypothermia
12
adult rats
12
delayed hypothermia
12
hypothermia
10
hypothermia adult
8
rats subjected
8
middle cerebral
8
cerebral artery
8
artery occlusion
8
2-month survival
8

Similar Publications

Background: Induced hypothermia post-cardiac arrest is neuroprotective in animal experiments, but few high-quality studies have been performed in larger animals with human-like brains. The neuroprotective effect of postischemic hypothermia has recently been questioned in human trials. Our aim is to investigate whether hypothermia post-cardiac arrest confers a benefit compared to normothermia in large adult animals.

View Article and Find Full Text PDF

Therapeutic hypothermia (TH) provides cardioprotection from ischemia/reperfusion (I/R) injury. However, it remains unknown how TH regulates metabolic recovery. We tested the hypothesis that TH modulates PTEN, Akt, and ERK1/2, and improves metabolic recovery through mitigation of fatty acid oxidation and taurine release.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how hypothermia (H), cardioplegia (CP), and their combination (HCP) can protect heart mitochondria during myocardial ischemia-reperfusion injury.
  • Rats were divided into groups to assess cardiac function and mitochondrial changes after different treatment durations and temperatures following a period of ischemia.
  • Results show that H and HCP treatments are more effective at preserving mitochondrial integrity compared to control treatments, suggesting they enhance protection against cell death during heart injury.
View Article and Find Full Text PDF

Background: Following acute myocardial infarction (MI), irreversible damage to the myocardium can only be reduced by shortening the duration between symptom onset and revascularization. While systemic hypothermia has shown promising results in slowing pre-revascularization myocardial damage, it is resource intensive and not conducive to prehospital initiation. We hypothesized that topical neck cooling (NC), an easily implemented therapy for en route transfer to definitive therapy, could similarly attenuate myocardial ischemia-reperfusion injury (IRI).

View Article and Find Full Text PDF

In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!