Preclinical studies comparing perflubron partial liquid ventilation with conventional mechanical ventilation have indicated that perflubron partial liquid ventilation may exert some anti-inflammatory effects. To assess whether these effects were related to the lipid solubility properties of perflubron rather than to nonspecific biophysical properties of the perfluorocarbon (PFC) liquid phase, we studied the effects of PFCs with varying lipid solubilities on the platelet aggregation response to various procoagulants and the erythrocyte hemolytic response to osmotic stress. In both cases, the degree of the response was directly related to the lipid solubility of the PFC. All the perflubron content of erythrocytes was found to be associated with the membrane compartment. The time to reach a maximum effect on hemolysis with perflubron was relatively slow (2-4 h), which paralleled the time for perflubron to accumulate in erythrocyte membranes. The rate and extent of perflubron partitioning into lecithin liposomes were similar to those of erythrocyte membranes, supporting the hypothesis that perflubron was partitioning into the lipid component of the membranes. Thus some of the potential modulatory effects of perflubron on excessive inflammatory responses that occur during acute lung injury and acute respiratory distress syndrome may be influenced in part by the extent of PFC partitioning into the lipid bilayers of cellular membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.2000.278.5.L1018 | DOI Listing |
Heliyon
January 2025
Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791 Iran.
This research addresses the gap in efficient thawing methods by investigating the effects of ohmic thawing variables and freezing methods on the thawing speed and quality attributes of ground turkey breast, aiming to identify the optimal ohmic thawing method and compare it with traditional air and water thawing techniques. The variables for ohmic thawing consisted of voltage gradient (10, 15, and 20 V/cm), freezing method (Snap (rapid freezing of samples in liquid nitrogen at -210 °C), -70, and -20 °C), and probe type. The results showed that the snap-freezing method demonstrated superior functional and quality characteristics.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:
Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France. Electronic address:
Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC.
View Article and Find Full Text PDFMol Pharm
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing.
View Article and Find Full Text PDFTher Deliv
January 2025
Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia.
Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.
Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!