Prolyl 4-hydroxylase is required for viability and morphogenesis in Caenorhabditis elegans.

Proc Natl Acad Sci U S A

Departments of Biochemistry and Chemistry, and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA.

Published: April 2000

The genome of Caenorhabditis elegans possesses two genes, dpy-18 and phy-2, that encode alpha subunits of the enzyme prolyl 4-hydroxylase. We have generated deletions within each gene to eliminate prolyl 4-hydroxylase activity from the animal. The dpy-18 mutant has an aberrant body morphology, consistent with a role of prolyl 4-hydroxylase in formation of the body cuticle. The phy-2 mutant is phenotypically wild type. However, the dpy-18; phy-2 double mutant is not viable, suggesting an essential role for prolyl 4-hydroxylase that is normally accomplished by either dpy-18 or phy-2. The effects of the double mutation were mimicked by small-molecule inhibitors of prolyl 4-hydroxylase, validating the genetic results and suggesting that C. elegans can serve as a model system for the discovery of new inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18302PMC
http://dx.doi.org/10.1073/pnas.97.9.4736DOI Listing

Publication Analysis

Top Keywords

prolyl 4-hydroxylase
24
dpy-18 phy-2
12
caenorhabditis elegans
8
role prolyl
8
prolyl
6
4-hydroxylase
5
4-hydroxylase required
4
required viability
4
viability morphogenesis
4
morphogenesis caenorhabditis
4

Similar Publications

Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.

View Article and Find Full Text PDF

Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.

Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).

View Article and Find Full Text PDF

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!