Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer.

Biochim Biophys Acta

UMR 7001 CNRS/ENSCP/Aventis, Centre de Recherche de Vitry Alfortville, 13 quai Jules Guesde, BP 14, 94403 Vitry sur Seine Cedex, France.

Published: May 2000

Gene transfer using electrical pulses is a rapidly expanding field. Many studies have been performed in vitro to elucidate the mechanism of DNA electrotransfer. In vivo, the use of efficient procedures for DNA electrotransfer in tissues is recent, and the question of the implied mechanisms is largely open. We have evaluated the effects of various combinations of square wave electric pulses of variable field strength and duration, on cell permeabilization and on DNA transfection in the skeletal muscle in vivo. One high voltage pulse of 800 V/cm, 0.1 ms duration (short high pulse) or a series of four low voltage pulses of 80 V/cm, 83 ms duration (long low pulses) slightly amplified transfection efficacy, while no significant permeabilization was detected using the (51)Cr-EDTA uptake test. By contrast, the combination of one short high pulse followed by four long low pulses led to optimal gene transfer efficiency, while inducing muscle fibers permeabilization. These results are consistent with additive effects of electropermeabilization and DNA electrophoresis on electrotransfer efficiency. Finally, the described new combination, as compared to the previously reported use of repeated identical pulses of intermediate voltage, leads to similar gene transfer efficiency, while causing less permeabilization and thus being likely less deleterious. Thus, combination of pulses of various strengths and durations is a new procedure for skeletal muscle gene transfer that may represents a clear improvement in view of further clinical development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-4165(00)00028-3DOI Listing

Publication Analysis

Top Keywords

gene transfer
16
dna electrotransfer
12
skeletal muscle
8
v/cm duration
8
short high
8
high pulse
8
long low
8
low pulses
8
transfer efficiency
8
pulses
7

Similar Publications

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.

View Article and Find Full Text PDF

Genomic characterization of Escherichia coli with a polyketide synthase (pks) island isolated from ulcerative colitis patients.

BMC Genomics

January 2025

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

The E. coli strains harboring the polyketide synthase (pks) island encode the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involves whole-genome-wide comparison and phylogenetic analysis of pks harboring E.

View Article and Find Full Text PDF

Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation.

View Article and Find Full Text PDF

Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!