Ouabain-sensitive H,K-ATPase functions as Na,K-ATPase in apical membranes of rat distal colon.

J Biol Chem

Department of Internal Medicine, Yale University, New Haven, Connecticut 06520, USA.

Published: April 2000

Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.17.13035DOI Listing

Publication Analysis

Top Keywords

nak-atpase activity
16
apical membranes
12
apical membrane
12
hk-atpase activities
12
membrane nak-atpase
12
protein expression
12
ouabain-sensitive hk-atpase
8
rat distal
8
distal colon
8
alternate mode
8

Similar Publications

Article Synopsis
  • Cancer cells need more energy (ATP) to grow and survive, which can change how they take in and balance sodium ions in their bodies.
  • The researchers used special methods to measure sodium levels and how fast cancer cells convert sugar into energy, comparing cancer cells to normal cells to see the differences.
  • They found that when they blocked a specific pump that controls sodium balance (Na/K-ATPase), the cancer cells had more sodium and produced less energy, showing that sodium levels affect their energy production.
View Article and Find Full Text PDF

High dietary lipid level promotes low salinity adaptation in the marine euryhaline crab ().

Anim Nutr

March 2023

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (, BW = 17.87 ± 1.

View Article and Find Full Text PDF
Article Synopsis
  • SLC4A11 mutations are linked to various corneal dystrophies and associated conditions like Harboyan syndrome.
  • Research on mice missing the Slc4a11 gene shows they develop issues similar to congenital hereditary endothelial dystrophy, emphasizing the protein's role in corneal health.
  • Five specific SLC4A11 mutations were analyzed in a cell line, revealing that, while there were no significant differences in protein levels at the cell surface, all mutations led to reduced acidification and H ion currents compared to the wild type, indicating altered transport properties rather than protein trafficking issues.
View Article and Find Full Text PDF

Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station.

Yale J Biol Med

March 2017

Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University; Department of Neurology, Feinberg School of Medicine, Northwestern University.

Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death.

View Article and Find Full Text PDF

Our laboratory has recently demonstrated that low concentrations of ouabain increase blood pressure in rats associated with stimulation of NaK ATPase activity and activation of the Src signaling cascade in NHE1-dependent manner. Proteomic analysis of human kidney proximal tubule cells (HKC11) suggested that the Angiotensin II type 1 receptor (AT1R) as an ouabain-associating protein. We hypothesize that ouabain-induced stimulation of NaK ATPase activity is mediated through AT1R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!