Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alkyl-substituted hydroxybenzenes (AHBs), auto-inducers of microbial dormancy (or d1 factors), were found to stabilize the structure of protein macromolecules, making them metabolically less active and more resistant to stresses. In vitro experiments with the Bacillus intermedius ribonuclease and chymotrypsin showed that the degree of the physical and chemical stability of these enzymes treated with AHBs depends on their concentration and incubation time. Experiments with RNase, which is capable of refolding, i.e., renaturation after heat denaturation, revealed that AHBs efficiently interact with both intact and denatured proteins. The data obtained allow the inference to be made that d1 factors may play the role of natural chemical chaperons, blocking metabolism in dormant cells through the formation of catalytically inactive thermostable complexes with enzymes.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!