A small protein that mediates the activation of a two-component system by another two-component system.

EMBO J

Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110-1093, USA.

Published: April 2000

The PmrA-PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP-PhoQ. Here, we define the genetic basis for the interaction between the PhoP-PhoQ and PmrA-PmrB systems. We have identified pmrD as a PhoP-activated gene that mediates the transcriptional activation of PmrA-regulated genes during growth in low magnesium. When transcription of pmrD is driven from a heterologous promoter, expression of PmrA-activated genes occurs even at repressing magnesium concentrations and becomes independent of the phoP and phoQ genes. The PmrD effect is specific for PmrA-regulated genes and requires functional PmrA and PmrB proteins. A pmrD mutant is sensitive to polymyxin if grown in low magnesium, but resistant if grown in high iron. The PmrD protein controls the activity of the PmrA-PmrB system at a post-transcriptional level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302009PMC
http://dx.doi.org/10.1093/emboj/19.8.1861DOI Listing

Publication Analysis

Top Keywords

two-component system
16
low magnesium
12
pmra-activated genes
8
high iron
8
growth low
8
pmra-regulated genes
8
system
5
genes
5
pmrd
5
small protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!