Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation.

Virology

Department of Biochemistry, Molecular Biology, and Cell Biology, Evanston, IL 60208-3500, USA.

Published: April 2000

The fusion (F) protein of the paramyxovirus SV5 strain W3A causes syncytium formation without coexpression of the SV5 hemagglutinin-neuraminidase (HN) glycoprotein, whereas the F protein of the SV5 strain WR requires coexpression of HN for fusion activity. SV5 strains W3A and WR differ by three amino acid residues at positions 22, 443, and 516. The W3A F protein residues P22, S443, and V516 were changed to amino acids found in the WR F protein (L22, P443, and A516, respectively). Three single-mutants, three double-mutants, and the triple-mutant were constructed, expressed, and assayed for fusion using three different assays. Mutant P22L did not cause fusion under physiological conditions, but fusion was activated at elevated temperatures. Compared with the W3A F protein, mutant S443P enhanced the fusion kinetics with a faster rate and greater extent, and had a lower activation temperature. Mutant V516A had little effect on F protein-mediated fusion. The double-mutant P22L,S443P was capable of causing fusion, suggesting that the two mutations have opposing effects on fusion activation. The WR F protein requires coexpression of HN to cause fusion at 37 degrees C, and does not cause fusion at 37 degrees C when coexpressed with influenza virus hemagglutinin (HA); however, at elevated temperatures coexpression of WR F protein with HA resulted in fusion activation. In the crystal structure of the core trimer of the SV5 F protein (Baker, K. A., Dutch, R. E., Lamb, R.A., and Jardetzky, T. S. (1999). Mol. Cell 3, 309-319), S443 is the last residue (with interpretable electron density) in an extended chain region and the temperature factor for S443 is high, suggesting conformational flexibility at this point. Thus, the presence of prolines at residues 22 and 443 may destabilize the F protein and thereby decrease the energy required to trigger the presumptive conformational change to the fusion-active state.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.2000.0267DOI Listing

Publication Analysis

Top Keywords

fusion
14
fusion activation
12
protein
9
fusion protein
8
protein paramyxovirus
8
paramyxovirus sv5
8
sv5 strain
8
requires coexpression
8
coexpression fusion
8
w3a protein
8

Similar Publications

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA and protein sequences remains a significant challenge.

View Article and Find Full Text PDF

Study Design: Retrospective cohort study OBJECTIVES: The purpose of this study was to compare the 2-year radiological outcome and revision rates in patients with ASD treated with either PSO or PLIF, when PLIF was used to improve sagittal balance.

Methods: In 2016, PLIF was introduced at our institution as an alternative method when restoring lumbar lordosis. We analyzed two cohorts of patients with ASD undergoing either: PSO in 2010-2015 or PLIF in 2016-2020, retrospectively.

View Article and Find Full Text PDF

This study aimed to investigate the underlying mechanisms by which physical exercise mitigates muscle atrophy induced by Dexamethasone (Dex). A muscle atrophy model was established in the mouse C2C12 cell line and 8-week-old mice treated with Dex, with subsequent verification of phenotype and atrogene expression. The potential benefits of combined aerobic and resistance exercise in mitigating muscle atrophy were then examined.

View Article and Find Full Text PDF

Unified Knowledge-Guided Molecular Graph Encoder with multimodal fusion and multi-task learning.

Neural Netw

December 2024

School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:

The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.

View Article and Find Full Text PDF

Verification imaging in prostate MR-only radiotherapy: Are fiducial markers necessary?

Radiography (Lond)

December 2024

Newcastle Upon Tyne Hospitals NHS Foundation Trust, Northern Centre for Cancer Care, Newcastle Upon Tyne, United Kingdom; Newcastle University, Translational and Clinical Research Institute, Newcastle Upon Tyne, United Kingdom.

Purpose/objective: MR-only radiotherapy planning exploits the benefits of MRI soft-tissue delineation, whilst negating the registration inaccuracies caused by MRI CT fusion. Fiducial markers have conventionally been used in prostate radiotherapy to reduce on-treatment image matching variability. However, this is an invasive procedure for the patient, and presents technical difficulties in an MR-only pathway as fiducial markers are difficult to visualise on MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!