We studied the effect of brain and spinal cord injury induced by fluid-percussion on the local synthesis of neurosteroids as measured by a gas-chromatographic/mass-spectrometric method. In the nervous system of sham operated rats i.v. infusion of pregnenolone (PREGN)-sulfate results in a 2-4 fold increase in PREGN, progesterone (PROG), 5alpha-dehydroprogesterone (5alpha-DHP) and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha5alpha-THP, allopregnanolone) concentrations, as compared to vehicle treated rats. When PREGN-sulfate was infused 1, 3 or 7 days after brain or spinal cord injury it was observed a large time-dependent increase of PROG, 5alpha-DHP and 3alpha5alpha-THP levels in the peri-focal but not in the focal site. This increase in neurosteroids content may be due essentially to the glial cells hyperplasia in the peri-focal area and to an activation of the pathways involved in the metabolism of PREGN-sulfate to PROG, 5alpha-DHP and 3alpha5alpha-THP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3940(00)00965-4DOI Listing

Publication Analysis

Top Keywords

brain spinal
12
spinal cord
12
cord injury
12
prog 5alpha-dhp
8
5alpha-dhp 3alpha5alpha-thp
8
increased neurosteroids
4
neurosteroids synthesis
4
synthesis brain
4
injury rats
4
rats studied
4

Similar Publications

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy.

Acta Pharmacol Sin

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.

View Article and Find Full Text PDF

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

Introduction: IBS is a prevalent gut-brain interaction disorder characterized by abdominal pain and altered bowel habits, significantly affecting quality of life (QoL). IBS contributes to substantial work absenteeism and economic burdens and often coexists with other somatic and psychiatric conditions, with psychological well-being being a critical determinant of QoL. IBS sufferers often turn to MT due to dissatisfaction with conventional treatments.

View Article and Find Full Text PDF

Age bias in changes in finger dexterity based on brain activation and spinal motor nerve excitability induced by motor imagery practice.

Neuroscience

January 2025

Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.

Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!