Prolactin (PRL)-PRL receptor system increases cell proliferation involving JNK (c-Jun amino terminal kinase) and AP-1 activation: inhibition by glucocorticoids.

Mol Endocrinol

Departamento de Biología Molecular-Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.

Published: April 2000

PRL receptor (PRLR) signal transduction supports PRL-induced growth/differentiation processes. While PRL is known to activate Jak2-Stat5 (signal transducer and activator of transcription 5) signaling pathway, the mechanism by which cell proliferation is stimulated is less known. We show that PRL induces proliferation of bovine mammary gland epithelial cells and AP-1 site activation. Using PRLR mutants and the PRLR short form, we have found that both homodimerization of PRLR wild type and the integrity of box-1 and C-distal tyrosine of PRLR intracellular domain are needed in PRL-induced proliferation and AP-1 activation. The effect of PRL has been assayed in the presence of dexamethasone (Dex), insulin, and alone. We found that Dex negatively regulates PRL-induced proliferation and AP-1 site activation. We demonstrate that PRL exerts activation of AP-1 transcriptional complex, and the mechanism by which this activation is produced is also studied. We show that PRL induces an increase in the c-Jun content of AP-1 transcriptional complexes. The PRL-induced c-Jun of AP-1 transcriptional complex diminishes in the presence of Dex in a dose-dependent manner. Dex inhibition was reversed by the higher concentration of PRL added to cells. Despite the fact that the regulation of the AP-1 site is complex, we found that PRL activates the c-Jun amino terminal kinase (JNK), while glucocorticoid prevents this JNK activation. These data support a regulation of cellular growth by PRL-PRLR system by increasing AP-1 transcriptional complex activity via JNK activation. JNK activation can be repressed by glucocorticoid in a DNA-binding-independent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1210/mend.14.4.0442DOI Listing

Publication Analysis

Top Keywords

ap-1 transcriptional
16
ap-1 site
12
transcriptional complex
12
jnk activation
12
ap-1
9
activation
9
cell proliferation
8
c-jun amino
8
amino terminal
8
terminal kinase
8

Similar Publications

Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats.

Neurochem Int

December 2024

Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, 970, Taiwan. Electronic address:

Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.

View Article and Find Full Text PDF

Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes.

Microb Pathog

December 2024

Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany. Electronic address:

Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood.

View Article and Find Full Text PDF

The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.

View Article and Find Full Text PDF

Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.

View Article and Find Full Text PDF

SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF.

Theriogenology

December 2024

Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!