Single-nucleotide polymorphisms (SNPs) represent the most prevalent class of genetic markers available for linkage disequilibrium or cladistic analyses. PCR primers may be labeled with fluorescent dyes and used to rapidly and accurately differentiate among alleles that are defined by a single-nucleotide differences. Here, we describe the primer-mediated detection of SNPs based on primer mismatch during allele-specific amplification of preamplified target sequences. Primers are labeled with different fluors at their 5' nucleotides, with their 3' termini at the transition mutation that defines allelic variation at the target locus. Each primer perfectly matches one of the two available alleles for each locus. Electrophoretic detection permits characterization of the product both by size and fluor. This report demonstrates some of the capabilities of this assay, including heterozygote determination and multiplexed analysis.

Download full-text PDF

Source
http://dx.doi.org/10.2144/00284st07DOI Listing

Publication Analysis

Top Keywords

electrophoretic detection
8
single-nucleotide polymorphisms
8
primers labeled
8
detection single-nucleotide
4
polymorphisms single-nucleotide
4
polymorphisms snps
4
snps represent
4
represent prevalent
4
prevalent class
4
class genetic
4

Similar Publications

Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.

View Article and Find Full Text PDF

(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with transcription levels.

View Article and Find Full Text PDF

Neutral lipids restrict the mobility of broken DNA molecules during comet assays.

Biol Cell

January 2025

Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.

One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region.

View Article and Find Full Text PDF

The development and validation of an accurate, selective, and eco-friendly capillary zone electrophoretic detection (CZE) method has been presented for concurrent measurement of inorganic and organic anions including chloride, sulfate, formic acid, citric acid, acetic acid, phosphate, and glutamic acid in Human Milk Oligosaccharides (HMOs) for the first time. An electrolyte composed of an aqueous solution of benzoic acid, 16.38 mM; l-histidine, 24.

View Article and Find Full Text PDF

We previously used high pressure liquid chromatography (HPLC) coupled with Se-specific inductively coupled plasma mass spectrometry (ICP-MS) and molecule specific (ESI Orbitrap MS/MS) detection to study the increase in liver Se in turkeys and rats supplemented as selenite in high-Se (5 µg Se/g diet) and adequate-Se diets. We found that far more Se is present as selenosugar (seleno-N-acetyl galactosamine) than is present as selenocysteine (Sec) in true selenoproteins. In high-Se liver, the increase in liver Se was due to low molecular weight (LMW) selenometabolites as glutathione-, cysteine- and methyl-conjugates of the selenosugar, but also as high molecular weight (HMW) species as selenosugars decorating general proteins via mixed-disulfide bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!