Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one approximately 60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jökulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/314404 | DOI Listing |
Mar Biol
December 2009
Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA.
Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow hydrothermal vents (White Point, CA) were found at deep-sea hydrothermal vents. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near vents at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge.
View Article and Find Full Text PDFBiol Bull
April 2006
Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California, USA.
The Sovanco Fracture Zone and Blanco Transform Fault separate the Explorer, Juan de Fuca, and Gorda ridge systems of the northeastern Pacific Ocean. To test whether such offsets in the ridge axis create barriers to along-axis dispersal of the endemic hydrothermal vent animals, we examined the genetic structure of limpet populations previously identified as Lepetodrilus fucensis McLean, 1988 (Gastropoda, Lepetodrilidae). Mitochondrial DNA sequences and patterns of allozyme variation revealed no evidence that the 150-km-long Sovanco Fracture Zone impeded gene flow between the Explorer and Juan de Fuca populations.
View Article and Find Full Text PDFEscanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35.
View Article and Find Full Text PDFOrg Geochem
February 1999
Petroleum and Environmental Geochemistry Group, Oregon State University, Corvallis 97331, USA.
We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.
View Article and Find Full Text PDFOrg Geochem
October 1998
Petroleum and Environmental Geochemistry Group, Oregon State University, Corvallis 97331, USA.
Hydrothermal petroleums and heavy tars have been analyzed for polycyclic aromatic hydrocarbons (PAH) with molecular weights greater than that of coronene (300 da). Samples from the hydrothermal systems in the Guaymas Basin (Gulf of California) and in the Escanaba Trough and Middle Valley (Northeastern Pacific) were analyzed by gas chromatography-mass spectrometry and high pressure liquid chromatography with diode-array absorbance detection. Mass spectra and fluorescence spectra were used to characterize the compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!