Unlabelled: The goal of this research was to develop and evaluate a practical transmission scanning system for attenuation correction on a 2-head gamma camera coincidence scanner.
Methods: The transmission system operates in singles mode and uses point sources of 137Cs that emit 662-keV gamma-radiation. Each point source is inserted between existing septa that are normally used to provide an approximately 2-dimensional emission acquisition geometry. The sources are placed along a line parallel to the axis of rotation near the edge of 1 camera. Data are acquired with the opposing camera. The septa provide axial collimation for the sources so that the transmission system operates in a 2-dimensional offset fanbeam geometry. Camera energy and spatial resolution were measured at 511 and 662 keV. Sensitivity was measured at 662 keV. The effects on axial resolution of adding supplemental collimation to the septa were shown. The system was calibrated and tested using a resolution (rod) phantom and a uniformity phantom. Torso phantom data were acquired. Patient transmission and emission scans were obtained. Postinjection transmission data were used to correct patient emission data.
Results: The camera resolution at postinjection counting rates was 11.7% full width at half maximum (FWHM) for 662-keV gamma-rays. Intrinsic spatial resolution was 2.7 mm (FWHM) at 662 keV. The sensitivity of the system was 280 Hz/MBq using five 74-MBq sources of 137Cs in the transmission geometry, with supplemental collimation added to the septa to improve axial resolution. The transaxial resolution of the system was such that the smallest rods (6-mm diameter and 12-mm spacing) were well resolved in a reconstructed resolution-phantom image. The corrected patient emission scans were free of attenuation-induced artifacts.
Conclusion: An easily implemented transmission system for a 2-head gamma camera coincidence scanner that can be used for postinjection transmission scanning has been developed.
Download full-text PDF |
Source |
---|
Ultramicroscopy
January 2025
Mechanical Engineering, University of Michigan, USA.
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.
View Article and Find Full Text PDFPharmaceutics
January 2025
Pharmacy, Pharmaceutical Technology and Physico-Chemical Department, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
Fischer-Tropsch synthesis (FTS) in a 3D-printed stainless steel (SS) microchannel microreactor was investigated using Fe@SiO catalysts. The catalysts were prepared by two different techniques: one pot (OP) and autoclave (AC). The mesoporous structure of the two catalysts, Fe@SiO (OP) and Fe@SiO (AC), ensured a large contact area between the reactants and the catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!