Tryptophan enantiomers have been separated by zwitterion pair chromatography using L-leucine-L-leucine-L-leucine peptide as the zwitterion pairing agent. The peptide ligand is adsorbed onto an octadecylsilane support with excess ligand present in bulk solution. This article examines the roles of the hydrophobic matrix and the mobile phase components on tryptophan enantiomer binding and resolution. Capacity factors and enantioselectivites are given for both hydrophobic and hydrophilic matrices using mobile phases containing Leu-Leu-Leu peptide and/or salt. A decrease in selectivity upon the addition of mobile phase salt suggests that quadrupolar ion-pairing contributes to chiral recognition. Results indicate that binding is significantly reduced and separation is not achieved when Leu-Leu-Leu is coupled onto cross-linked or polymerized hydrophilic resins as well as onto macroporous polystyrene resin. However, resin-immobilized Leu-Leu-Asp-Leu-Leu-Leu, Leu-Leu-Glu-Leu-Leu-Leu, and Leu-Leu-Leu-Glu-Leu-Leu peptides, with ion-pairing sites designed to mimic the Leu-Leu-Leu-saturated C18 support, also do not resolve tryptophan enantiomers. This suggests the Leu-Leu-Leu structure is critical for enantiomer resolution. Because D- and L-tryptophan are separated in the absence of bulk Leu-Leu-Leu, chiral discrimination is believed to occur at the surface of the octadecylsilane support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(99)01299-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!