This article summarizes results obtained from studies on the differentiation of dopaminergic neurons in animal hypothalamus and human substantia nigra in situ, in vitro, and in transplants, as well as the role of the microenvironment in regulating this process. Four stages were identified in the differentiation of dopaminergic neurons from rat hypothalamus: a) formation of neurons from neuroepithelial precursor cells, b) expression of specific synthetic products (enzymes and dopamine itself) and mechanisms for transmembrane dopamine transport (reuptake and secretion in response to membrane depolarization), c) formation of permanent and transient efferent connections, and d) formation of afferent innervation and synaptogenesis. Along with dopaminergic neurons, rat fetuses contained neurons expressing only one of the dopamine-synthesizing enzymes and probably taking part in in situ dopamine synthesis. Differentiation of dopaminergic neurons was sexually dimorphic in terms of the dynamics of neuron formation and expression of enzymes involved in dopamine synthesis. A neurotransplantation model showed that humoral factors of placental and maternal origin had no significant effect on the differentiation of the dopaminergic neurons of the hypothalamus. As regards the dopaminergic neurons of the substantia nigra, expression of their specific phenotype in human fetuses started with the synthesis of tyrosine hydroxylase and co-maturation of the specific dopamine reuptake mechanism during the sixth week of development. During the next four weeks, specific uptake increased, and this appears to be a measure of the number of neurons and the growth of their processes. These data provide the basis for regarding the period from week 6 to week 10 as optimal for transplantation of dopaminergic neurons into the striatum of patients with Parkinson's disease. Suspensions of fetal substantia nigra cells enriched with dopaminergic neurons were introduced stereotaxically into a patient's striatum through a cannula. Positron emission tomography studies showed that the transplanted neurons survived within the host brain, underwent differentiation, and started to synthesize dopamine. The results of clinical assessment performed in parallel with these studies suggested that the transplanted dopaminergic neurons were involved in regulating striatal target neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02461390 | DOI Listing |
Mol Divers
January 2025
School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Histology & Embryology, Rasht - Parastar Street, Guilan University of Medical Sciences, 13111-41937, Iran.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons (DA) which can be caused by environmental and genetic factors. lncRNAs have emerged as an important regulatory layer in neurodegenerative disorders, including PD. In this study, we investigated and validated lncRNAs that may serve as diagnostic or therapeutic targets for PD.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.
Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFSci Adv
January 2025
New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!