Identification and characterization of a eukaryotically encoded rubredoxin in a cryptomonad alga.

FEBS Lett

Cell Biology and Applied Botany, Philipps-University Marburg, Karl-von-Frisch-Strasse, D-35032, Marburg, Germany.

Published: April 2000

AI Article Synopsis

Article Abstract

We have identified an open reading frame with homology to prokaryotic rubredoxins (rds) on a nucleomorph chromosome of the cryptomonad alga Guillardia theta. cDNA analysis let us propose that the rd preprotein has an NH(2)-terminal extension that functions as a transit peptide for import into the plastid. Compared to rds found in non-photosynthetic prokaryotes or found in bacteria that exhibit an anoxigenic photosynthesis apparatus, nucleomorph rd has a COOH-terminal extension, which shows high homology exclusively to the COOH-termini of cyanobacterial rds as well as to a hypothetical rd in the Arabidopsis genome. This extension can be divided into a putative membrane anchor and a stretch of about 20 amino acids with unknown function linking the common rd fold to this anchor. Overexpression of nucleomorph rd in Escherichia coli using a T7 RNA polymerase/promotor system resulted in a mixture of iron-containing holorubredoxin and zinc-substituted protein. Preliminary spectroscopic studies of the iron form of nucleomorph rd suggest the existence of a native rd-type iron site. One-dimensional nuclear magnetic resonance spectroscopy of recombinant Zn-rd suggests the presence of a stable tertiary fold similar to that of other rd structures determined previously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(00)01399-5DOI Listing

Publication Analysis

Top Keywords

cryptomonad alga
8
identification characterization
4
characterization eukaryotically
4
eukaryotically encoded
4
encoded rubredoxin
4
rubredoxin cryptomonad
4
alga identified
4
identified open
4
open reading
4
reading frame
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!