Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinical trials have extensively reported the ability of Hypericum perforatum extracts to exert a significant antidepressant activity. Hypericin, the main constituent of H. perforatum extract, is no more regarded as the active principle of the antidepressant activity of the drug. Hence, the question of which constituents are involved in the basic activity of the total extract, is still waiting for an answer. In the present study we focused our attention on the potential anxiolytic activity of H. perforatum total extract, and of some pure components such as protohypericin and a fraction containing hypericin and pseudohypericin. Herein we report that the total extract of H. perforatum increases the locomotor activity in the open field and exerts anxiolytic activity in the light-dark test, whereas the single components did not show any effect. Interestingly, the anxiolytic activity of the total extract was blocked by pretreatment of rats with the benzodiazepine antagonist Flumazenil, hence suggesting an implication of benzodiazepine receptor activation in the anxiolytic effect of H. perforatum extract. Electrophysiological studies, performed to gain more information on the mechanism of action, showed that hypericin reduced the GABA-activated chloride currents, while pseudohypericin did an opposite effect. Furthermore, both hypericin and pseudohypericin inhibited the activation of NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0091-3057(99)00233-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!