Tumor metastases are extremely rare in striated muscles. This is surprising given the fact that this tissue constitutes 60% of body weight. The present study focuses on small molecules produced and secreted by muscle cells which possess anti-cancer activity in vivo. Recently we have shown that a low molecular weight fraction (< 1000 Dalton) of skeletal muscle cell conditioned medium (muscle factor-MF), markedly inhibits the proliferation of carcinoma, sarcoma or melanoma cell lines in vitro. The MF exerts a cytostatic effect on tumor cell growth and arrests the cells in the G0/G1 of the cell cycle. However, normal cell proliferation, such as bone marrow and fibroblasts, was stimulated following incubation with MF. In this study, the effect of orally administered MF on melanoma and sarcoma growth was examined in mice. The administration of MF to mice inoculated intravenously with melanoma (B16-F10) or sarcoma (MCA-105) cells, resulted in a statistically significant inhibition of metastatic lung foci. In a different model, melanoma was induced in the foot pad and after development of a local lesion, the leg was amputated. A prolonged survival time was observed in the MF treated groups. Since the MF stimulated bone marrow cell proliferation in vitro, we decided to test its efficacy as an inhibitor of the myelotoxic effect exerted by chemotherapy, in vivo. MF, administered after chemotherapy, restored the number of white blood cells and yielded an increased percentage of neutrophils compared with the decline in these parameters after administration of chemotherapy alone. Thus, it is indicated that MF exerted a systemic anti tumor and chemoprotective effect when given orally. It can be concluded that it is bioavailable and is not biodegradable in the digestive system. MF may be considered as a potential therapy for the prevention of tumor spread.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1006649617918 | DOI Listing |
Free Radic Biol Med
January 2025
Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.
View Article and Find Full Text PDFBiomaterials
January 2025
The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China. Electronic address:
Enterohepatic circulation (EHC) is a critical biological process for the normal regulation of many endogenous biomolecules and the increased retention of various exogenous substances. The status of EHC is closely related to the ordinary functioning of several digestive organs. However, it remains a challenge to achieve in vivo real-time visualization of this process.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Route de la Corniche 3B, Novigenix SA, 1066, Epalinges, Switzerland
Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.
Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms.
J Chem Theory Comput
January 2025
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States.
We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Bioengineering, Xihua University, Chengdu 610039, China. Electronic address:
This study investigated the interactions between Capsaicinoids (CAPs) and beef myofibrillar proteins (MPs) in a peroxyl radical system and elucidated the antioxidant mechanisms of CAPs by multispectral and molecular docking. Results showed that low concentration CAPs prevented the oxidative changes of protein structure caused by the attack of AAPH radicals on MPs, while high concentration of CAPs changed the structure of the proteins to form more small molecule aggregates, and reduce the binding of actin-myosin, which was conducive to the tenderization of the meats. CAPs bound to the MPs through hydrophobic interaction, hydrogen bonding and electrostatic interaction, altering the secondary and tertiary structure of MPs, increasing the α-helix content of MPs, and improving the antioxidant structural stability of MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!