This paper reports on the performance of a recently developed neural network environment incorporating likelihood-based optimization and complexity reduction techniques in the analysis of breast cancer follow-up data with the goal of building up a clinical decision support system. The inputs to the neural network include classical factors such as grading, age, tumor size, estrogen and progesterone receptor measurements, as well as tumor biological markers such as PAI-1 and uPA. The network learns the structural relationship between these factors and the follow-up data. Examples of neural models for relapse-free survival are presented, which are based on data from 784 breast cancer patients who received their primary therapy at the Department of Obstetrics and Gynecology, Technische Universität München, Germany. The performance of the neural analysis as quantified by various indicators (likelihood, Kaplan-Meier curves, log-rank tests) was very high. For example, dividing the patients into two equally sized groups based on the neural score (i.e., cutoff = median score) leads to an estimated difference in relapse-free survival of 40% or better (80% vs. 40%) after 10 years in Kaplan-Meier analysis. Evidence for factor interactions as well as for time-varying impacts is presented. The neural network weights included in the models are significant at the 5% level. The use of neural network analysis and scoring in combination with strong tumor biological factors such as uPA and PAI-1 appears to result in a very effective risk group discrimination. Considerable additional comparison of data from different patient series will be required to establish the generalization capability more firmly. Nonetheless, the improvement of risk group discrimination represents an important step toward the use of neural networks for decision support in a clinical framework and in making the most of biological markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/172460080001500123 | DOI Listing |
PLoS One
January 2025
Department of Computer Science, Khalifa University, Abu Dhabi, UAE.
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).
View Article and Find Full Text PDFPLoS One
January 2025
Data Management, Modelling and Geo-Information Unit, International Centre of Insect Physiology and Ecology, Kenya.
Organic fertilizers have been identified as a sustainable agricultural practice that can enhance productivity and reduce environmental impact. Recently, the European Union defined and accepted insect frass as an innovative and emerging organic fertilizer. In the wider domain of organic fertilizers, mathematical and computational models have been developed to optimize their production and application conditions.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!