Glutamate transporters play an important role in the re-uptake of glutamate after its release from glutamatergic synapses. So far five of such transporters subtypes have been cloned from rodent and human brains. The densities of glutamate transporters are recognised to be developmentally regulated, but the role of glutamate transporters in the mechanisms underlying the occurrence of neuronal traumatic injury has not been widely studied. In the present study quantitative Western blotting and immunohistochemical technique were employed to study the expression of GLT-1/EAAT2 in the facial nuclei of adult rats following unilateral facial nerve axotomy. The total content of GLT-1 protein decreased in the ipsilateral axotomised rat facial nucleus. However, activated microglia surrounding motoneurons showed high expression of GLT-1 after facial nerve axotomy. Parallel studies revealed that primary cultured microglial cells also showed GLT-1-immunoreactivity. To our knowledge, this is the first direct demonstration of the expression of GLT-1 protein in activated microglial cells, suggesting a neuroprotective role of microglia against glutamate excitotoxicity following nerve axotomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-328x(00)00022-x | DOI Listing |
Cell Death Dis
January 2025
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.
View Article and Find Full Text PDFNat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFJ Physiol
December 2024
Division of Reconstructive and Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
The frequent poor functional outcomes after delayed surgical repair of injured human peripheral nerves results in progressive downregulation of growth-associated genes in parallel with reduced neuronal regenerative capacity under each of the experimental conditions of chronic axotomy of neurones that remain without target contact, chronic distal nerve stump denervation, and chronic muscle denervation. Brief (1 h) low-frequency (20 Hz) electrical stimulation (ES) accelerates the outgrowth of regenerating axons across the surgical site of microsurgical repair of a transected nerve. Exercise programmes also promote nerve regeneration with the combination of ES and exercise being the most effective.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China.
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (I) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with I is lacking. In this study, I was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA).
View Article and Find Full Text PDFPLoS One
December 2024
Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
The optical imaging agent TcapQ488 has enabled imaging of retinal ganglion cell (RGC) injury in vivo in rodents and has potential as an effective diagnostic probe for early detection and intervention monitoring in glaucoma patients. In the present study, we investigated TcapQ488 in non-human primates (NHPs) to identify labeling efficacy and early signals of injured RGC, to determine species-dependent changes in RGC probe uptake and clearance, and to determine dose-limiting toxicities. Doses of 3, 6, and 12 nmol of TcapQ488 were delivered intravitreally to normal healthy NHP eyes and eyes that had undergone hemiretinal endodiathermy axotomy (HEA) in the inferior retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!